मराठी

मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं? a * b = a – b ∀ a, b ∈ Q - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?

a * b = a – b ∀ a, b ∈ Q

बेरीज

उत्तर

यह देखते हुए कि * Q पर परिभाषित एक द्वि-आधारी संक्रिया है।

a * b = a – b, ∀ a, b ∈ Q और b * a = b – a

तो, a * b ≠ b * a

इस प्रकार, * क्रमविनिमेय नहीं है।

shaalaa.com
संबंध एवं फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: संबंध एव फलन - प्रश्नावली [पृष्ठ १४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 1 संबंध एव फलन
प्रश्नावली | Q 26. (i) | पृष्ठ १४

संबंधित प्रश्‍न

यदि f(x) = x2 तो `(f(1.1) - f(1))/((1.1 - 1))` ज्ञात कीजिए।


मान लीजिए कि R = {(a, b) : संख्या 2, a – b को विभाजित करती है} द्वारा परिभाषित संबध R पूर्णांकों के समुच्चय Z में तुल्यता संबंध है।तुल्यता-वर्ग [0] लिखिए।


यदि f = {(5, 2), (6, 3)}, g = {(2, 5), (3, 6)}, तो f o g लिखिए।


समुच्चय A = {1, 2, 3} पर विचार कीजिए तथा R, A में छोटे से छोटा तुल्यता संबंध है, तो R = ______


समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f आच्छादी है तो f तथा g भी आच्छादी हैं। 


मान लीजिए कि A = {a, b, c} तथा A में परिभाषित संबंध R निम्नलिखित है:

R = {(a, a), (b, c), (a, b)}. तो उन क्रमित युग्मों की, कम से कम, संख्या लिखिए, जिनको R में जोड़ने से R स्वतुल्य तथा संक्रामक बन जाता है।


मान लीजिए कि f , g : R → R क्रमश: f (x) = 2x + 1 तथा g (x) = x2 – 2, ∀ x ∈ R द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए।


मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।

h = {(1,4), (2, 5), (3, 5)}


यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:

स्वतुल्य, सममित तथा संक्रामक हों।


दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :

B से A में एक प्रतिचित्रण।


एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -

न तो एकैकी है और न आच्छादक है।


मान लीजिए कि A = R – {3}, B = R – {1}, मान लीजिए कि f : A → B, f (x) = `(x - 2) /(x - 3)` ∀ x ∈ A द्वारा परिभाषित है, तो सिद्ध कीजिए कि f एकैकी आच्छादी है।


मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलनएकैकी, आच्छादक या एकैकी आच्छादी हैं:

g(x) = |x|


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x + 4y = 10, x, y ∈ N

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो g o g ज्ञात कीजिए:


मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?

a * b = a2 + b2 ∀ a, b ∈ Q


किसी परिवार में बच्चों के अरिक्त समुच्चय तथा aRb, यदि a भाई है b का, द्वारा परिभाषित संबंध R पर विचार कीजिए, तो R ______


मान लीजिए कि हम R में एक संबंध R इस प्रकार परिभाषित करें aRb यदि a ≥ b, तो R _________ है।


यदि समुच्चय A में 5 अवयव हैं तथा समुच्चय B में 6 अवयव हैं, तो A से B में एकैकी तथा आच्छादक प्रतिचित्रणों की संख्या ______ है।


मान लीजिए f: R → R, f(x) = `1/x` x ∈ R द्वारा परिभाषित है, तो f ______ है।


Z से Z में निम्नलिखित फलनों से कौन-से एकैकी आच्छादी हैं?


मान लीजिए f: [0, 1] → [0, 1] f(x) =`[(x, "यदि"  x  "परिमेय है")/(1-x  "यदि"  x  "अपरिमेय है")]`

द्वारा परिभाषित है, तो (f o f) x ______ है।  


मान लीजिए कि N में एक संबंध R, aRb यदि 2a + 3b = 30 द्वारा परिभाषित है, तो R = ______।


मान लीजिए कि f = {(1, 2), (3, 5), (4, 1) तथा g = {(2, 3), (5, 1), (1, 3)}। तो g o f = ______ तथा f o g = ______।


मान लीजिए कि f: R → R, f(x) = `x/sqrt(1 + x^2)` द्वारा परिभाषित है, तो ( f o f o f ) (x) = ______।


एक पूर्णांक m एक अन्य पूर्णांक n से संबंधित कहालाता है, यदि m, एक पूर्णांकीय गुणज है n का। Z में इस प्रकार का संबंध स्वतुल्य, सममित तथा संक्रामक होता है।


प्रत्येक फलन व्युत्क्रमणीय होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×