Advertisements
Advertisements
प्रश्न
मान लीजिए f: R → R, f(x) = `1/x` x ∈ R द्वारा परिभाषित है, तो f ______ है।
पर्याय
एकैकी है।
आच्छादक है।
एकैकी आच्छादक है।
f परिभाषित नहीं है।
उत्तर
मान लीजिए f: R → R, f(x) = `1/x` x ∈ R द्वारा परिभाषित है, तो f परिभाषित नहीं है।
व्याख्या:
हमारे पास, f(x) = `1/x` ∀ x ∈ R
x = 0 के लिए, f(x) परिभाषित नहीं है।
इसलिए, f(x) एक परिभाषित कार्य नहीं है।
APPEARS IN
संबंधित प्रश्न
फलन f(x) = f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)` का प्रांत ज्ञात कीजिए।
मान लीजिए कि f : R → R है तब निम्नलिखित प्रकार से परिभाषित चिन्ह फलन (Signum Function) है |
f(x) = `{(1"," x > 0), (0"," x = 0),(-1"," x < 0):}`
तथा g : R → R, g(x) = [x], द्वारा प्रदत्त महत्तम पूर्णांक फलन है, जहाँ [x], x से कम या x के बराबर पूर्णांक है, तो क्या fog तथा gof, अंतराल [0, 1] में संपाती (coincide) हैं?
क्या Z (पूर्णांकों का समुच्चय) में m * n = m – n + mn ∀ m, n ∈ Z द्वारा परिभाषित द्विआधारी-संक्रिया * कर्म -विनिमेय है?
प्राकृत संख्याओं के समुच्चय N में m * n = g.c.d (m, n), m, n ∈ N द्वारा द्वि-आधारी- संक्रिया * परिभाषित कीजिए।क्या संक्रिया * कर्मविनिमेय तथा साहचर्य है?
मान लीजिए कि f: R → R, f(x) = 3x – 4, द्वारा परिभषित हैं, तो f–1(x)
समुच्चय A = {1, 2, 3} पर विचार कीजिए तथा R, A में छोटे से छोटा तुल्यता संबंध है, तो R = ______
f (x) = `sqrt(x^2 –3x +2)` द्वारा परिभषित फलन f : R → R का प्रांत ______ है।
मान लीजिए कि A एक परिमित समुच्चय है, तो A से स्वयं A में प्रत्येक एकैक फलन आच्छादी नहीं है।
समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f आच्छादी है तो f तथा g भी आच्छादी हैं।
मान लीजिए कि N प्राकृत संख्याओं का समुच्चय है, तो a * b = a + b, ∀ a, b ∈ N द्वारा N में परिभाषित द्वि-आधारी संक्रिया * के लिए तत्समक अवयव है।
यदि f : R → R, f (x) = x2 – 3x + 2 द्वारा परिभाषित है, तो f (f (x)) लिखिए।
क्या क्रमित युग्मों का निम्लिखित समुच्चय, फलन हैं? यदि ऐसा है, तो जाँच कीजिए कि प्रतिचित्रण एकैक अथवा आच्छादि हैं कि नहीं हैं।
{(a, b): a एक व्यक्ति है, b पूर्वज है a का}
मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।
g = {(1, 4), (2, 4), (3, 4)}
मान लीजिए f: R → R f(x) = `1/(2 - cosx)` x R द्वारा परिभाषित एक फलन है। तो , f का परिसर ज्ञात कीजिए।
दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :
A से B में एक एकैक प्रतिचित्रण।
एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -
एकैकी नहीं है किंतु आच्छादक है।
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x y किसी पूर्णाक का वर्ग है, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x + 4y = 10, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a – b ∀ a, b ∈ Q
किसी परिवार में बच्चों के अरिक्त समुच्चय तथा aRb, यदि a भाई है b का, द्वारा परिभाषित संबंध R पर विचार कीजिए, तो R ______
समुच्चय A = {1, 2, 3} में तुल्यता संबंधों की अधिकतम संख्या ______ है।
यदि समुच्चय {1, 2, 3} में R = {(1, 2)} द्वारा परिभाषित एक संबंध R है, तो R ______ है।
मान लीजिए कि f: R → R f(x) = 3x2 - 5 द्वारा तथा g: R → R g(x) = `x/(x^2 + 1)` द्वारा परिभाषित है, तो g o f ______ है।
मान लीजिए f: R → R f(x) = x3 + 5 द्वारा परिभाषित एक फलन है, तो f–1(x) ______ है।
मान लीजिए f: R → R, f(x) = sin (3x+2) ∀ x ∈ R द्वारा परिभाषित एक फलन है। तो f व्युत्क्रमणीय है।
एक पूर्णांक m एक अन्य पूर्णांक n से संबंधित कहालाता है, यदि m, एक पूर्णांकीय गुणज है n का। Z में इस प्रकार का संबंध स्वतुल्य, सममित तथा संक्रामक होता है।
मान लीजिए A = {0, 1} और N प्राकृत संख्याओं का समुच्चय है, तो f(2n – 1) = 0, f(2n) = 1, ∀ n∈ N द्वारा परिभाषित प्रतिचित्रण f: N → A आच्छादक है।
फलनों का संयोजन क्रम-विनिमेय होता है।