Advertisements
Advertisements
प्रश्न
Make V the subject of formula K = `(1)/(2)"MV"^2`
उत्तर
K = `(1)/(2)"MV"^2`
⇒ 2K = MV2
⇒ `(2"K")/"M"` = V2
⇒ `sqrt((2"K")/"M"` = V.
APPEARS IN
संबंधित प्रश्न
The volume V, of a cone is equal to one third of π times the cube of the radius. Find a formula for it.
Make a formula for the statement:"The number of diagonals, d, that can be drawn from one vertex of an n sided polygon to all the other vertices is equal to the number of sides of the polygon less 3"
The area A of a circular ring is π times the difference between the squares of outer radius R and inner radius r. Make a formula for this statement.
Make a the subject of formula x = `sqrt(("a" + "b")/("a" - "b")`
Given: mx + ny = p and y = ax + b. Find x in terms of m, n, p, a and b.
If b = `(2"a")/("a" - 2)`, and c = `(4"b" - 3)/(3"b" + 4)`, then express c in terms of a.
Make a the subject of the formula S = `"n"/(2){2"a" + ("n" - 1)"d"}`. Find a when S = 50, n = 10 and d = 2.
Make c the subject of the formula a = b(1 + ct). Find c, when a = 1100, b = 100 and t = 4.
The total energy E possess by a body of Mass 'm', moving with a velocity 'v' at a height 'h' is given by: E = `(1)/(2) "m" "u"^2 + "mgh"`. Find m, if v = 2, g = 10, h = 5 and E = 104.
"Area A oof a circular ring formed by 2 concentric circles is equal to the product of pie and the difference of the square of the bigger radius R and the square of the bigger radius R and the square of the smaller radius r. Express the above statement as a formula. Make r the subject of the formula and find r, when A = 88 sq cm and R = 8cm.