मराठी

Maximum value of the objective function Z = ax + by in a LPP always occurs at only one corner point of the feasible region. - Mathematics

Advertisements
Advertisements

प्रश्न

Maximum value of the objective function Z = ax + by in a LPP always occurs at only one corner point of the feasible region.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is False.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Linear Programming - Exercise [पृष्ठ २५७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 12 Linear Programming
Exercise | Q 43 | पृष्ठ २५७

संबंधित प्रश्‍न

Solve the following Linear Programming Problems graphically:

Minimise Z = 3x + 5y

such that x + 3y ≥ 3, x + y ≥ 2, x, y ≥ 0.


Solve the following Linear Programming Problems graphically:

Maximise Z = 3x + 2y

subject to x + 2y ≤ 10, 3x + y ≤ 15, x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Minimise and Maximise Z = 5x + 10 y

subject to x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Maximise Z = x + y, subject to x – y ≤ –1, –x + y ≤ 0, x, y ≥ 0.


A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per bag contains 3 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional elements A, 11.25 units of element B, and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?


A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:

Type of toy Machines
I II III
A 12 18 6
B 6 0 9

Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is Rs 7.50 and that on each toy of type B is Rs 5, show that 15 toys of type A and 30 of type B should be manufactured in a day to get maximum profit.

 


To maintain his health a person must fulfil certain minimum daily requirements for several kinds of nutrients. Assuming that there are only three kinds of nutrients-calcium, protein and calories and the person's diet consists of only two food items, I and II, whose price and nutrient contents are shown in the table below:
 

  Food I
(per lb)
  Food II
(per lb)
    Minimum daily requirement
for the nutrient
 Calcium 10   5     20
Protein 5   4     20
 Calories 2   6     13
 Price (Rs) 60   100      


What combination of two food items will satisfy the daily requirement and entail the least cost? Formulate this as a LPP.


The minimum value of the objective function Z = ax + by in a linear programming problem always occurs at only one corner point of the feasible region


Feasible region (shaded) for a LPP is shown in Figure. Maximise Z = 5x + 7y.


The feasible region for a LPP is shown in Figure. Find the minimum value of Z = 11x + 7y


A man rides his motorcycle at the speed of 50 km/hour. He has to spend Rs 2 per km on petrol. If he rides it at a faster speed of 80 km/hour, the petrol cost increases to Rs 3 per km. He has atmost Rs 120 to spend on petrol and one hour’s time. He wishes to find the maximum distance that he can travel. Express this problem as a linear programming problem


Refer to quastion 12. What will be the minimum cost?


A company makes 3 model of calculators: A, B and C at factory I and factory II. The company has orders for at least 6400 calculators of model A, 4000 calculator of model B and 4800 calculator of model C. At factory I, 50 calculators of model A, 50 of model B and 30 of model C are made every day; at factory II, 40 calculators of model A, 20 of model B and 40 of model C are made everyday. It costs Rs 12000 and Rs 15000 each day to operate factory I and II, respectively. Find the number of days each factory should operate to minimise the operating costs and still meet the demand.


The corner points of the feasible region determined by the system of linear constraints are (0, 0), (0, 40), (20, 40), (60, 20), (60, 0). The objective function is Z = 4x + 3y ______.

Compare the quantity in Column A and Column B

Column A Column B
Maximum of Z 325

The feasible solution for a LPP is shown in Figure. Let Z = 3x – 4y be the objective function. Minimum of Z occurs at ______.


In a LPP if the objective function Z = ax + by has the same maximum value on two corner points of the feasible region, then every point on the line segment joining these two points give the same ______ value.


A corner point of a feasible region is a point in the region which is the ______ of two boundary lines.


In the given graph, the feasible region for an LPP is shaded. The objective function Z = 2x – 3y will be minimum at:


In a linear programming problem, the constraints on the decision variables x and y are x − 3y ≥ 0, y ≥ 0, 0 ≤ x ≤ 3. The feasible region:


Objective function of a linear programming problem is ____________.


A maximum or a minimum may not exist for a linear programming problem if ____________.


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. Let M and m respectively be the largest and smallest values at corner points. In case feasible region is unbounded, M is the maximum value of the objective function if ____________.


If two corner points of the feasible region are both optimal solutions of the same type, i.e., both produce the same maximum or minimum.


In a LPP, the objective function is always ____________.


Maximize Z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.


Maximize Z = 6x + 4y, subject to x ≤ 2, x + y ≤ 3, -2x + y ≤ 1, x ≥ 0, y ≥ 0.


Maximize Z = 10 x1 + 25 x2, subject to 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3, x1 + x2 ≤ 5.


Z = 6x + 21 y, subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0. The minimum value of Z occurs at ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×