मराठी

Refer to quastion 12. What will be the minimum cost? - Mathematics

Advertisements
Advertisements

प्रश्न

Refer to quastion 12. What will be the minimum cost?

तक्ता
बेरीज

उत्तर

As per the solution of Question No.12

We have Z = 400x + 200y

Subject to the constraints

5x + 2y ≥ 30   ......(i)

2x + y ≤ 15  ......(ii)

x ≤ y, x ≥ 0, y ≥ 0

x – y ≤ 0  .....(iii)

Let 5x + 2y = 30

x 0 6
y 15 0

Let 2x + y = 15

x 0 7.5
y 15 0

Let x – y = 0

x 0 1
y 0 1

Solving equation (i) and (iii) we get

 x = `30/7` and y = `30/7`

And on solving equation (ii) and (iii) we get, x = 5 and y = 5

Here, ABC is the shaded feasible region whose corner points are `"A"(30/7, 30/7)`, B(5, 5) and C(0, 15)

Evaluating the value of Z, we have

Corner points Value of Z = 400x + 200y  
`"A"(30/7, 30/7)`

Z = `400(30/7) + 200(30/7)`

= `18000/7` = 2571.4

← Minimum
B(5, 5) Z = 400(5) + 200(5) = 3000  
C(0, 15) Z = 400(0) + 200(15) = 3000  

Hence, the required minimum cost is ₹ 2571.4 at `(30/7, 30/7)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Linear Programming - Exercise [पृष्ठ २५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 12 Linear Programming
Exercise | Q 17 | पृष्ठ २५३

संबंधित प्रश्‍न

Solve the following Linear Programming Problems graphically:

Maximise Z = 3x + 4y

subject to the constraints : x + y ≤ 4, x ≥ 0, y ≥ 0.


Solve the following Linear Programming Problems graphically:

Maximise Z = 5x + 3y

subject to 3x + 5y ≤ 15, 5x + 2y ≤ 10, x ≥ 0, y ≥ 0


Solve the following Linear Programming Problems graphically:

Minimise Z = 3x + 5y

such that x + 3y ≥ 3, x + y ≥ 2, x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Minimise and Maximise Z = 5x + 10 y

subject to x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Minimise and Maximise Z = x + 2y 

subject to x + 2y ≥ 100, 2x – y ≤ 0, 2x + y ≤ 200; x, y ≥ 0.


Refer to Example 9. How many packets of each food should be used to maximize the amount of vitamin A in the diet? What is the maximum amount of vitamin A in the diet?


Determine the maximum value of Z = 11x + 7y subject to the constraints : 2x + y ≤ 6, x ≤ 2, x ≥ 0, y ≥ 0.


Determine the maximum value of Z = 3x + 4y if the feasible region (shaded) for a LPP is shown in Figure


Feasible region (shaded) for a LPP is shown in Figure. Maximise Z = 5x + 7y.


Refer to Exercise 7 above. Find the maximum value of Z.


The feasible region for a LPP is shown in figure. Evaluate Z = 4x + y at each of the corner points of this region. Find the minimum value of Z, if it exists.


Maximise Z = x + y subject to x + 4y ≤ 8, 2x + 3y ≤ 12, 3x + y ≤ 9, x ≥ 0, y ≥ 0.


A manufacturer produces two Models of bikes-Model X and Model Y. Model X takes a 6 man-hours to make per unit, while Model Y takes 10 man-hours per unit. There is a total of 450 man-hour available per week. Handling and Marketing costs are Rs 2000 and Rs 1000 per unit for Models X and Y respectively. The total funds available for these purposes are Rs 80,000 per week. Profits per unit for Models X and Y are Rs 1000 and Rs 500, respectively. How many bikes of each model should the manufacturer produce so as to yield a maximum profit? Find the maximum profit.


The corner points of the feasible region determined by the system of linear constraints are (0, 0), (0, 40), (20, 40), (60, 20), (60, 0). The objective function is Z = 4x + 3y ______.

Compare the quantity in Column A and Column B

Column A Column B
Maximum of Z 325

Refer to Question 27. (Maximum value of Z + Minimum value of Z) is equal to ______.


Corner points of the feasible region for an LPP are (0, 2), (3, 0), (6, 0), (6, 8) and (0, 5). Let F = 4x + 6y be the objective function. The Minimum value of F occurs at  ______.


Refer to Question 32, Maximum of F – Minimum of F = ______.


If the feasible region for a LPP is ______ then the optimal value of the objective function Z = ax + by may or may not exist.


In a LPP if the objective function Z = ax + by has the same maximum value on two corner points of the feasible region, then every point on the line segment joining these two points give the same ______ value.


A corner point of a feasible region is a point in the region which is the ______ of two boundary lines.


In a LPP, the maximum value of the objective function Z = ax + by is always finite.


In linear programming infeasible solutions


In linear programming, optimal solution ____________.


Maximize Z = 6x + 4y, subject to x ≤ 2, x + y ≤ 3, -2x + y ≤ 1, x ≥ 0, y ≥ 0.


Maximize Z = 10 x1 + 25 x2, subject to 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3, x1 + x2 ≤ 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×