Advertisements
Advertisements
प्रश्न
Multiply and then evaluate:
(x2 – y) and (xy – y2); when x = 1 and y = 2.
उत्तर
(x2 − y) × (xy − y2)
= x2 (xy − y2) − y (xy − y2)
= x3y − x2y2 − xy2 + y3
Verification:
When x = 1, y = 2
∴ L.H.S. = (x2 − y) (xy − y2)
= [(1)2 − 2] [1 × 2 − (2)2]
= (1 − 2) (2 − 4)
= − 1 × − 2
= 2
R.H.S. = x3y − x2y2 − xy2 + y3
= (1)3 × 2 − (1)2 (2)2 − 1(2)2 + (2)3
= 1 × 2 − 1 × 4 − 1 × 4 + 8
= 2 − 4 − 4 + 8
= 10 − 8
= 2
∴ L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Fill in the blank, when:
x = 3, y = 6, z = 18, a = 2, b = 8, c = 32 and d = 0.
xy − bd = ..............
If a = 3, b = 0, c = 2 and d = 1, find the value of 3a + 2b − 6c + 4d
If x = 2, y = 5 and z = 4, find the value of the following:
`("x"^2"y"^2"z"^2)/"xz"`
Evaluate:
(3y + 8y) – 5y
Simplify:
12x − (5x + 2x)
Simplify:
x − (y − z) + x + (y − z) + y − (z + x)
Fill in the blank:
2t + r − p − q + s = 2t + r − (..................)
Insert the bracket as indicated:
x − 2y = − (...................)
Insert the bracket as indicated:
x2 − y2 + z2 = x2 − (..................)
If x = 3, y = 2 and z = 1; find the value of xy + y2z – 4zx