Advertisements
Advertisements
प्रश्न
निम्नलिखित के बीच में तीन परिमेय संख्याएँ ज्ञात कीजिए :
`5/7` और `6/7`
उत्तर
माना `x = 5/7` और `y = 6/7` है।
यहाँ, x < y
यहाँ, हमें तीन परिमेय संख्याएँ ज्ञात करनी हैं।
n = 3 पर विचार करें,
∵ `d = (y - x)/(n + 1)`
∴ `d = (6/7 - 5/7)/4 = (1/7)/4 = 1/28`
चूँकि, x और y के बीच तीन परिमेय संख्याएँ (x + d), (x + 2d) और (x + 3d) हैं।
अब, `x + d = 5/7 + 1/28`
= `(20 + 1)/28`
= `21/28`
`x + 2d = 5/7 + 2/28`
= `(20 + 2)/28`
= `22/28`
और `x + 3"d" = 5/7 + 3/28`
= `(20 + 3)/28`
= `23/28`
अत:, `5/7` और `6/7` के बीच तीन परिमेय संख्याएं `21/28, 22/28, 23/28` हैं।
इसके अलावा, उपरोक्त सूत्र का उपयोग किए बिना `5/7` और `6/7` के बीच तीन परिमेय संख्याएँ `51/70, 52/70, 53/70` हैं।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित के हर का परिमेयकरण कीजिए:
`1/sqrt7`
निम्नलिखित के बीच में एक परिमेय संख्या और एक अपरिमेय संख्या प्रविष्ट कीजिए :
0 और 0.1
निम्नलिखित के बीच में एक परिमेय संख्या और एक अपरिमेय संख्या प्रविष्ट कीजिए :
6.375289 और 6.375738
निम्नलिखित को `p/q` के रूप में व्यक्त कीजिए, जहाँ p और q पूर्णांक हैं तथा q ≠ 0 है :
0.888...
निम्नलिखित को `p/q` के रूप में व्यक्त कीजिए, जहाँ p और q पूर्णांक हैं तथा q ≠ 0 है :
0.2555...
निम्नलिखित के हर का परिमेयीकरण कीजिए :
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
निम्नलिखित में हर का परिमेयीकरण कीजिए और फिर `sqrt(2) = 1.414, sqrt(3) = 1.732` और `sqrt(5) = 2.236` लेते हुए तीन दशमलव स्थानों तक का मान ज्ञात कीजिए।
`4/sqrt(3)`
निम्नलिखित में हर का परिमेयीकरण कीजिए और फिर `sqrt(2) = 1.414, sqrt(3) = 1.732` और `sqrt(5) = 2.236` लेते हुए तीन दशमलव स्थानों तक का मान ज्ञात कीजिए।
`(sqrt(10) - sqrt(5))/2`
सरल कीजिए :
`[((625)^(-1/2))^((-1)/4)]^2`
सरल कीजिए :
`(256)^(-(4^((-3)/2))`