Advertisements
Advertisements
प्रश्न
निम्नलिखित में बहुपद् ज्ञात कीजिए, जिनके शून्यकों के क्रमशः योग और गुणनफल दिए हुए हैं। साथ ही, गुणनखंडन द्वारा, इन बहुपदों के शून्यक भी ज्ञात कीजिए :
`21/8, 5/16 `
उत्तर
शून्यों का योग = `21/8`
शून्यों का गुणनफल = `5/16`
P(x) = x2 – (शून्यों का योग) + (शून्यों का गुणनफल)
फिर, P(x) = `x^2 – (21x)/8 + 5/16`
P(x) = 16x2 – 42x + 5
मध्य पद विभाजन विधि का उपयोग करते हुए,
16x2 – 42x + 5 = 0
16x2 – (2x + 40x) + 5 = 0
16x2 – 2x – 40x + 5 = 0
2x(8x – 1) – 5(8x – 1) = 0
(8x – 1)(2x – 5) = 0
`\implies` x = `1/8, 5/2`
APPEARS IN
संबंधित प्रश्न
निम्न द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए:
4s2 - 4s + 1
निम्न द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए:
4u2 + 8u
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
`1/4, -1`
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
1, 1
यदि बहुपद x4 - 6x3 + 16x2 - 25x + 10 को एक अन्य बहुपद x2 - 2x + k से भाग दिया जाए और शेषफल x + a आता हो, तो k तथा a ज्ञात कीजिए।
यदि द्विघात बहुपद् (k − 1)x2 + kx + 1 के शून्यकों में से एक शून्यक –3 है, तो k का मान है
यदि एक त्रिघात बहुपद के सभी शून्यक ऋणात्मक हैं, तो इस बहुपद के सभी गुणांक और अचर पद एक ही चिह्न के होते हैं।
k का केवल वह मान जिसके लिए द्विघात बहुपद kx2 + x + k के शून्यक बराबर है शून्यक `1/2` है।
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
4x2 – 3x – 1
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए: