मराठी

निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: x+x2 + x3 <11 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: ` x +x/2` + `x/3` <11

बेरीज

उत्तर

`x  + x/2` + `x/3` <11`

= `x(1 + 1/2 + 1/3) < 11`

= `(6x + 3x + 2x)/6 < 11`

 = `(11x)/6 < 11`

= `(11x)/(6 xx 11) < 11/11`

= `x/6 < 1`

= x < 6

इस प्रकार, सभी वास्तविक संख्याएँ x, जो 6 से कम हैं, दी गई असमिका का हल हैं।

इसलिए, दी गई असमिका का हल समुच्चय (–∞, 6) है।

shaalaa.com
एक चर राशि के रैखिक असमिकाओं का बीजगणितीय हल और उनका आलेखीय निरूपण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: रैखिक असमिकाएँ - प्रश्नावली 6.1 [पृष्ठ १३०]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 6 रैखिक असमिकाएँ
प्रश्नावली 6.1 | Q 9. | पृष्ठ १३०

संबंधित प्रश्‍न

हल कीजिए: -12x > 30, जब x एक पूर्णांक है।


हल कीजिए: 5x – 3 < 7, जब x एक पूर्णांक है।


हल कीजिए: 5x – 3 <7, जब x एक वास्तविक संख्या है।


हल कीजिए: 3x + 8 > 2, जब x एक वास्तविक संख्या है।


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 4x + 3 < 6x + 7


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `(3(x-2))/5 <= (5(2-x))/3`


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 2(2x + 3) – 10 < 6 (x – 2)


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `x/4 < (5x - 2)/3 - (7x - 3)/5`


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `((2x- 1))/3 >= ((3x - 2))/4 - ((2-x))/5`


दी गई असमिका का हल ज्ञात कीजिए तथा संख्या रेखा पर आलेखित कीजिए।

3(1 – x) < 2 (x + 4)


दी गई असमिका का हल ज्ञात कीजिए तथा संख्या रेखा पर आलेखित कीजिए।

`x/2 >= (5x -2)/3 - (7x - 3)/5`


रवि ने पहली दो एकक परीक्षा में 70 और 75 अंक प्राप्त किए हैं। वह न्यूनतम अंक ज्ञात कीजिए, जिसे वह तीसरी एकक परीक्षा में पाकर 60 अंक का न्यूनतम औसत प्राप्त कर सके।


10 से कम क्रमागत विषम संख्याओं के ऐसे युग्म ज्ञात कीजिए जिनके योगफल 11 से अधिक हों।


क्रमागत सम संख्याओं के ऐसे युग्म ज्ञात कीजिए जिनमें से प्रत्येक 5 से बड़े हों, तथा उनका योगफल 23 से कम हो।


एक व्यक्ति 91 सेमी लंबे बोर्ड में से तीन लंबाईयाँ काटना चाहता है। दूसरी लंबाई सबसे छोटो लंबाई से 3 सेमी अधिक और तीसरी लंबाई सबसे छोटी लंबाई की दूनी है। सबसे छोटे बोर्ड की संभावित लंबाई क्या है, यदि तीसरा टुकड़ा दूसरे टुकड़े से कम से कम 5 सेमी अधिक लंबा हो?

[संकेत: यदि सबसे छोटे बोर्ड की लंबाई x सेमी हो, तब (x + 3 ) सेमी और 2x सेमी क्रमश: दूसरे और तीसरे टुकड़ों की लंबाईयाँ हैं। इस प्रकार x + (x + 3) + 2x ≤ 91 और 2x ≥ (x + 3 ) + 5]


असमानता को हल कीजिए:

- 3 ≤ 4 - `(7x)/2 ≤ 18` 


असमानता को हल कीजिए:

`-15 < (3(x -  2))/5 <= 0`


असमिका को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।

2(x – 1) < x + 5, 3(x + 2) > 2 – x


असमिकाओं को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।

3x – 7 > 2(x -6), 6 – x > 11 – 2x


असमिकाओं को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।

5(2x – 7) – 3(2x + 3) ≤ 0, 2x + 19 ≤ 6x + 47


प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।


प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×