मराठी

निम्नलिखित व्यंजक के गुणनखंड कीजिए: 7a2 + 14a - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित व्यंजक के गुणनखंड कीजिए:

 7a2 + 14a 

बेरीज

उत्तर

7a2 = 7 × a × a

14a = 2 × 7 × a

सार्व कारक 7 और a हैं।

∴ 7a2 + 14a = (7 × a × a) + (2 × 7 × a)

= 7 × a (a + 2)

= 7a (a + 2)

shaalaa.com
बीजीय व्यंजकों के गुणनखंडन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: गुणनखंडन - प्रश्नावली 14.1 [पृष्ठ २२९]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 8
पाठ 14 गुणनखंडन
प्रश्नावली 14.1 | Q 2. (iii) | पृष्ठ २२९

संबंधित प्रश्‍न

निम्नलिखित व्यंजक के गुणनखंड कीजिए:

ax2y + bxy2 + cxyz


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

4x2 – 49y2


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

9x2 – 1


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

25ax2 – 25a


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

y4 – 625


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

(a – b)2 – (b – c)2


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

(x + y)4 – (x – y)4


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

9x2 – (3y + z)2


एक बेलन का वक्र पृष्ठीय क्षेत्रफल 2π(y2 − 7y + 12) है और इसकी त्रिज्या (y − 3) है। तब, बेलन की ऊँचाई ज्ञात कीजिए। (बेलन का C.S.A. = 2πrh)


निम्न में, स्तंभ I के व्यंजकों को स्तंभ II के व्यंजकों से सुमेलित कीजिए -

स्तंभ I स्तंभ II
(1) (21x + 13y)2 (a) 441x2 – 169y2
(2) (21x – 13y)2 (b) 441x2 + 169y2 + 546xy
(3) (21x – 13y)(21x + 13y) (c) 441x2 + 169y2 – 546xy
  (d) 441x2 – 169y2 + 546xy

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×