Advertisements
Advertisements
प्रश्न
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
y4 – 625
उत्तर
दिए गए बीजीय व्यंजक है -
y4 – 625
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है -
⇒ y2 × y2 − 25 × 25
⇒ (y2)2 − (25)2
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए -
यहाँ, a = y2, b = 25
a2 − b2 = (a + b)(a − b) का उपयोग करे,
⇒ y4 − 625 = (y2)2 − (25)2 = (y2 − 25)(y2 + 25)
इस प्रकार, y4 – 625 का गुणनखंड (y2)2 − (25)2 = (y2 − 25)(y2 + 25) है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
20 l2m + 30 alm
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
5x2y − 15xy2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
9x2 – 1
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/9 - y^2/25`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
x4 – y4 + x2 – y2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
8a3 – 2a
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
`x^2 - y^2/100`
एक वर्ग का क्षेत्रफल 4x2 + 12xy + 9y2 है। इस वर्ग की भुजा ज्ञात कीजिए।
(x + 5) प्रेक्षणों का योग x4 – 625 है। इन प्रेक्षणों का माध्य ज्ञात कीजिए।
निम्न में, स्तंभ I के व्यंजकों को स्तंभ II के व्यंजकों से सुमेलित कीजिए -
स्तंभ I | स्तंभ II |
(1) (21x + 13y)2 | (a) 441x2 – 169y2 |
(2) (21x – 13y)2 | (b) 441x2 + 169y2 + 546xy |
(3) (21x – 13y)(21x + 13y) | (c) 441x2 + 169y2 – 546xy |
(d) 441x2 – 169y2 + 546xy |