Advertisements
Advertisements
Question
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
y4 – 625
Solution
दिए गए बीजीय व्यंजक है -
y4 – 625
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है -
⇒ y2 × y2 − 25 × 25
⇒ (y2)2 − (25)2
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए -
यहाँ, a = y2, b = 25
a2 − b2 = (a + b)(a − b) का उपयोग करे,
⇒ y4 − 625 = (y2)2 − (25)2 = (y2 − 25)(y2 + 25)
इस प्रकार, y4 – 625 का गुणनखंड (y2)2 − (25)2 = (y2 − 25)(y2 + 25) है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
− 4a2 + 4ab − 4 ca
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
x2yz + xy2z + xyz2
निम्न के गुणनखंड कीजिए -
x2 + 18x + 65
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
4x2 – 25y2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
3a2b3 – 27a4b
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`y^3 - y/9`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
16x4 – 625y4
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
`x^2 - y^2/100`
एक बेलन का वक्र पृष्ठीय क्षेत्रफल 2π(y2 − 7y + 12) है और इसकी त्रिज्या (y − 3) है। तब, बेलन की ऊँचाई ज्ञात कीजिए। (बेलन का C.S.A. = 2πrh)
एक त्रिभुज की ऊँचाई x4 + y4 है तथा आधार 14xy है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।