Advertisements
Advertisements
Question
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
3a2b3 – 27a4b
Solution
दिए गए बीजीय व्यंजक है -
3a2b3 – 27a4b
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है,
3b(a2b2 − 9a4)
⇒ 3b(ab × ab − 3a2 × 3a2)
⇒ 3b((ab)2 − (3a2)2)
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,
यहाँ, a = ab, b = 3a2
a2 − b2 = (a + b)(a − b) का उपयोग करे,
⇒ 3a2b3 – 27a4b = 3b(ab + 3a2)(ab − 3a2)
इस प्रकार, 3a2b3 – 27a4b = 3b(ab + 3a2)(ab − 3a2) का गुणनखंड है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
7a2 + 14a
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
x2yz + xy2z + xyz2
निम्न के गुणनखंड कीजिए -
x2 + 18x + 65
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`y^3 - y/9`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(4x^2)/9 - (9y^2)/16`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
a4 – (a – b)4
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
(x + y)4 – (x – y)4
एक आयत का क्षेत्रफल x2 + 7x + 12 है। यदि इसकी चौड़ाई (x + 3) है, तो उसकी लंबाई ज्ञात कीजिए।
एक वृत्त की त्रिज्या 7ab − 7bc − 14ac है। उस वृत्त की परिधि ज्ञात कीजिए `(pi = 22/7)` का प्रयोग कीजिए।