Advertisements
Advertisements
Question
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`y^3 - y/9`
Solution
दिए गए बीजीय व्यंजक है -
`y^3 - y/9`
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है -
⇒ `y(y^2 - 1/3 xx 1/3)`
⇒ `y[(y)^2 - (1/3)^2]`
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,
यहाँ, a = y, b = `1/3`
a2 − b2 = (a + b)(a − b) का उपयोग करे,
⇒ `y^3 - y/9 = y[(y + 1/3)(y + 1/3)]`
इस प्रकार, `y^3 − y/9 = y[(y + 1/3)(y + 1/3)]` का गुणनखंड है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
−16z + 20z3
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(2p^2)/25 - 32q^2`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(4x^2)/9 - (9y^2)/16`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(x^3y)/9 - (xy^3)/16`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
x4 – y4
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
y4 – 81
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
16x4 – 625y4
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
(a – b)2 – (b – c)2
एक बेलन का वक्र पृष्ठीय क्षेत्रफल 2π(y2 − 7y + 12) है और इसकी त्रिज्या (y − 3) है। तब, बेलन की ऊँचाई ज्ञात कीजिए। (बेलन का C.S.A. = 2πrh)
एक त्रिभुज की ऊँचाई x4 + y4 है तथा आधार 14xy है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।