Advertisements
Advertisements
प्रश्न
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`y^3 - y/9`
उत्तर
दिए गए बीजीय व्यंजक है -
`y^3 - y/9`
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है -
⇒ `y(y^2 - 1/3 xx 1/3)`
⇒ `y[(y)^2 - (1/3)^2]`
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,
यहाँ, a = y, b = `1/3`
a2 − b2 = (a + b)(a − b) का उपयोग करे,
⇒ `y^3 - y/9 = y[(y + 1/3)(y + 1/3)]`
इस प्रकार, `y^3 − y/9 = y[(y + 1/3)(y + 1/3)]` का गुणनखंड है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
7x − 42
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
20 l2m + 30 alm
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
9x2 – 1
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
25ax2 – 25a
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/25 - 625`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/8 - y^2/18`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
y4 – 81
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
9x2 – (3y + z)2
एक वर्ग का क्षेत्रफल 4x2 + 12xy + 9y2 है। इस वर्ग की भुजा ज्ञात कीजिए।
एक त्रिभुज की ऊँचाई x4 + y4 है तथा आधार 14xy है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।