Advertisements
Advertisements
प्रश्न
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
9x2 – 1
उत्तर
दिए गए बीजीय व्यंजक है -
9x2 – 1
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है,
3x × 3x − 1 × 1
⇒ (3x)2 − (1)2
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,
यहाँ, a = 3x, b = 1
a2 − b2 = (a + b)(a − b) का उपयोग करे,
⇒ 9x2 − 1 = (3x + 1)(3x − 1)
इस प्रकार, 9x2 − 1 = (3x + 1)(3x − 1) का गुणनखंड है।
APPEARS IN
संबंधित प्रश्न
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
x2 − 9
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
25ax2 – 25a
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(2p^2)/25 - 32q^2`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/8 - y^2/18`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(4x^2)/9 - (9y^2)/16`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
a4 – (a – b)4
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
x4 – y4
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
(x + y)4 – (x – y)4
एक वृत्त की त्रिज्या 7ab − 7bc − 14ac है। उस वृत्त की परिधि ज्ञात कीजिए `(pi = 22/7)` का प्रयोग कीजिए।