Advertisements
Advertisements
प्रश्न
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
28ay2 – 175ax2
उत्तर
दिए गए बीजीय व्यंजक है -
28ay2 – 175ax2
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है,
7a(4y2 − 25x2)
⇒ 7a(2y × 2y − 5x × 5x)
⇒ 7a((2y)2 − (5x)2)
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,
यहाँ, a = 2y, b = 5x
a2 − b2 = (a + b)(a − b) का उपयोग करे,
⇒ 28ay2 − 175ax2 = 7a(2y + 5x)(2y − 5x)
इस प्रकार, 28ay2 − 175ax2 = 7a(2y + 5x)(2y − 5x) का गुणनखंड है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
−16z + 20z3
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
x2yz + xy2z + xyz2
निम्न के गुणनखंड कीजिए -
x2 + 18x + 65
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/8 - y^2/18`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`1/36a^2b^2 - 16/49b^2c^2`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
a4 – (a – b)4
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
y4 – 625
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
(a – b)2 – (b – c)2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
9x2 – (3y + z)2
एक बेलन का वक्र पृष्ठीय क्षेत्रफल 2π(y2 − 7y + 12) है और इसकी त्रिज्या (y − 3) है। तब, बेलन की ऊँचाई ज्ञात कीजिए। (बेलन का C.S.A. = 2πrh)