Advertisements
Advertisements
प्रश्न
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(2p^2)/25 - 32q^2`
उत्तर
दिए गए बीजीय व्यंजक है -
`(2p^2)/25 - 32q^2`
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है,
`2(p^2/25 - 16q^2)`
⇒ `2(p/5 xx p/5 - 4q xx 4q)`
⇒ `2(p/5)^2 - (2q)^2`
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,
यहाँ, `a = p/5, b = 2q`
`a^2 - b^2 = (a + b)(a - b)` का उपयोग करे,
⇒ `(2p^2)/25 - 32q^2 = 2(p/5 + 2q)(p/5 - 2q)`
इस प्रकार, `(2p^2)/25 - 32q^2 = 2(p/5 + 2q)(p/5 - 2q)` का गुणनखंड है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
−16z + 20z3
निम्न के गुणनखंड कीजिए -
x2 + 18x + 65
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
x2 − 9
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
9x2 – 1
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`y^3 - y/9`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/8 - y^2/18`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(4x^2)/9 - (9y^2)/16`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(x^3y)/9 - (xy^3)/16`
एक बेलन का वक्र पृष्ठीय क्षेत्रफल 2π(y2 − 7y + 12) है और इसकी त्रिज्या (y − 3) है। तब, बेलन की ऊँचाई ज्ञात कीजिए। (बेलन का C.S.A. = 2πrh)
एक वृत्त की त्रिज्या 7ab − 7bc − 14ac है। उस वृत्त की परिधि ज्ञात कीजिए `(pi = 22/7)` का प्रयोग कीजिए।