Advertisements
Advertisements
Question
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(2p^2)/25 - 32q^2`
Solution
दिए गए बीजीय व्यंजक है -
`(2p^2)/25 - 32q^2`
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है,
`2(p^2/25 - 16q^2)`
⇒ `2(p/5 xx p/5 - 4q xx 4q)`
⇒ `2(p/5)^2 - (2q)^2`
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,
यहाँ, `a = p/5, b = 2q`
`a^2 - b^2 = (a + b)(a - b)` का उपयोग करे,
⇒ `(2p^2)/25 - 32q^2 = 2(p/5 + 2q)(p/5 - 2q)`
इस प्रकार, `(2p^2)/25 - 32q^2 = 2(p/5 + 2q)(p/5 - 2q)` का गुणनखंड है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
7x − 42
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
7a2 + 14a
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`y^3 - y/9`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
1331x3y – 11y3x
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
16x4 – 81
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
x4 – y4
एक वर्ग का क्षेत्रफल 9x2 + 24xy + 16y2 है। इस वर्ग की भुजा ज्ञात कीजिए।
एक आयत का क्षेत्रफल x2 + 7x + 12 है। यदि इसकी चौड़ाई (x + 3) है, तो उसकी लंबाई ज्ञात कीजिए।
एक बेलन का वक्र पृष्ठीय क्षेत्रफल 2π(y2 − 7y + 12) है और इसकी त्रिज्या (y − 3) है। तब, बेलन की ऊँचाई ज्ञात कीजिए। (बेलन का C.S.A. = 2πrh)