Advertisements
Advertisements
Question
एक बेलन का वक्र पृष्ठीय क्षेत्रफल 2π(y2 − 7y + 12) है और इसकी त्रिज्या (y − 3) है। तब, बेलन की ऊँचाई ज्ञात कीजिए। (बेलन का C.S.A. = 2πrh)
Solution
यदि, बेलन की ऊंचाई h हो।
दिया गया, बेलन का वक्र पृष्ठीय क्षेत्रफल = 2π(y2 – 7y + 12)
बेलन की त्रिज्या = (y − 3)
बेलन की ऊँचाई ज्ञात करें -
चूंकि, बेलन का वक्र पृष्ठीय क्षेत्रफल = 2πrh
⇒ 2πrh = 2π(y2 – 7y + 12)
⇒ (y − 3)h = (y2 − 4y − 3y + 12)
⇒ (y − 3)h = (y(y − 4) − 3(y − 4))
⇒ (y − 3)h = (y − 4)(y − 3)
⇒ `h = ((y − 4)(y − 3))/(y − 3)`
⇒ h = (y − 4)
इस प्रकार, बेलन की ऊँचाई (y − 4) है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
7a2 + 14a
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
20 l2m + 30 alm
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
− 4a2 + 4ab − 4 ca
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
ax2y + bxy2 + cxyz
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
3a2b3 – 27a4b
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/9 - y^2/25`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(2p^2)/25 - 32q^2`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`y^3 - y/9`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/8 - y^2/18`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(4x^2)/9 - (9y^2)/16`