Advertisements
Advertisements
Question
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/8 - y^2/18`
Solution
दिए गए बीजीय व्यंजक है -
`x^2/8 − y^2/18`
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है,
⇒ `1/2(x/2 xx x/2 - y/3 xx y/3)`
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,
यहाँ, a = `x/5`, b = 5
a2 − b2 = (a + b)(a − b) का उपयोग करे,
`x^2/8 - y^2/18 = 1/2[(x/2)^2 - (y/9)^2] = 1/2(x/2 - y/9)(x/2 + y/9)`
इस प्रकार, `x^2/8 − y^2/18 = 1/2[(x/2)^2 - (y/9)^2] = 1/2(x/2 - y/9)(x/2 + y/9)` का गुणनखंड है।
APPEARS IN
RELATED QUESTIONS
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
3a2b3 – 27a4b
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(2p^2)/25 - 32q^2`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
1331x3y – 11y3x
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
16x4 – 81
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
16x4 – 625y4
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
(a – b)2 – (b – c)2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
x4 – y4 + x2 – y2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
8a3 – 2a
एक त्रिभुज की ऊँचाई x4 + y4 है तथा आधार 14xy है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।