Advertisements
Advertisements
Question
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(x^3y)/9 - (xy^3)/16`
Solution
दिए गए बीजीय व्यंजक है -
`(x^3y)/9 - (xy^3)/16`
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है,
⇒ `xy(x/3 xx x/3 - y/4 xx y/4)`
⇒ `xy[(x/3)^2 - (y/4)^2]`
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,
यहाँ, `a = x/3, b = y/4`
a2 − b2 = (a + b)(a − b) का उपयोग करे,
⇒ `(x^3y)/9 - (xy^3)/16 = xy[(x/3)^2 - (y/4)^2] = xy(x/3 - y/4)(x/3 + y/4)`
इस प्रकार, `(x^3y)/9 - (xy^3)/16 = xy[(x/3)^2 - (y/4)^2] = xy(x/3 - y/4)(x/3 + y/4)` का गुणनखंड है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
7x − 42
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
7a2 + 14a
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
4x2 – 49y2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
49x2 – 36y2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`y^3 - y/9`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
(a – b)2 – (b – c)2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
x4 – y4 + x2 – y2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
`x^2 - y^2/100`
एक त्रिभुज की ऊँचाई x4 + y4 है तथा आधार 14xy है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।