Advertisements
Advertisements
Question
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
4x2 – 49y2
Solution
दिए गए बीजीय व्यंजक है -
4x2 – 49y2
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है,
2x × 2x − 7y × 7y
⇒ (2x)2 − (7y)2
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,
यहाँ, a = 2x, b = 7y
a2 − b2 = (a + b)(a − b) का उपयोग करे,
⇒ 4x2 − 49y2 = (2x + 7y)(2x − 7y)
इस प्रकार, 4x2 − 49y2 = (2x + 7y)(2x − 7y) का गुणनखंड है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
−16z + 20z3
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
20 l2m + 30 alm
निम्न के गुणनखंड कीजिए -
x2 + 18x + 65
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
28ay2 – 175ax2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`(2p^2)/25 - 32q^2`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/25 - 625`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`1/36a^2b^2 - 16/49b^2c^2`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
y4 – 81
एक वृत्त का क्षेत्रफल व्यंजक πx2 + 6πx + 9π से दिया जाता है। वृत्त की त्रिज्या ज्ञात कीजिए।
(x + 5) प्रेक्षणों का योग x4 – 625 है। इन प्रेक्षणों का माध्य ज्ञात कीजिए।