English

सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए - (x + y)4 – (x – y)4 - Mathematics (गणित)

Advertisements
Advertisements

Question

सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

(x + y)4 – (x – y)4

Sum

Solution

दिए गए बीजीय व्यंजक है -

(x + y)4 – (x – y)4

दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है,

⇒ (x + y)2 × (x + y)2 − (x − y)2 × (x − y)2

⇒ ((x + y)2)2 − ((x − y)2)2

दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,

यहाँ, a = (x + y)2, b = (x − y)2

a2 − b2 = (a + b)(a − b) का उपयोग करे,

⇒ (x + y)4 − (x − y)4 = ((x + y)2)2 − ((x − y)2)2

⇒ [(x + y)2 + (x − y)2][(x + y)2 − (x − y)2]

इस प्रकार, (x + y)4 – (x – y)4 का गुणनखंड ((x + y)2)2 − ((x − y)2)2 = [(x + y)2 + (x − y)2][(x + y)2 − (x − y)2] है।

shaalaa.com
बीजीय व्यंजकों के गुणनखंडन
  Is there an error in this question or solution?
Chapter 7: बीजीय व्यंजक, सर्वसमिकाएँ और गुणनखंडन - प्रश्नावली [Page 232]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 8
Chapter 7 बीजीय व्यंजक, सर्वसमिकाएँ और गुणनखंडन
प्रश्नावली | Q 92. (xxvii) | Page 232

RELATED QUESTIONS

निम्नलिखित व्यंजक के गुणनखंड कीजिए:

 7a2 + 14a 


निम्नलिखित व्यंजक के गुणनखंड कीजिए:

 20 l2m + 30 alm 


निम्नलिखित व्यंजक के गुणनखंड कीजिए:

5x2y − 15xy


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

4x2 – 25y2


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

4x2 – 49y2


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

28ay2 – 175ax2


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

`(2p^2)/25 - 32q^2`


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

16x4 – 81


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

x4 – y4 + x2 – y2


एक बेलन का वक्र पृष्ठीय क्षेत्रफल 2π(y2 − 7y + 12) है और इसकी त्रिज्या (y − 3) है। तब, बेलन की ऊँचाई ज्ञात कीजिए। (बेलन का C.S.A. = 2πrh)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×