Advertisements
Advertisements
प्रश्न
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
y4 – 625
उत्तर
दिए गए बीजीय व्यंजक है -
y4 – 625
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है -
⇒ y2 × y2 − 25 × 25
⇒ (y2)2 − (25)2
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए -
यहाँ, a = y2, b = 25
a2 − b2 = (a + b)(a − b) का उपयोग करे,
⇒ y4 − 625 = (y2)2 − (25)2 = (y2 − 25)(y2 + 25)
इस प्रकार, y4 – 625 का गुणनखंड (y2)2 − (25)2 = (y2 − 25)(y2 + 25) है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
20 l2m + 30 alm
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
10a2 − 15b2 + 20c2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
4x2 – 49y2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
9x2 – 1
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/9 - y^2/25`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`y^3 - y/9`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
(a – b)2 – (b – c)2
एक आयत का क्षेत्रफल x2 + 7x + 12 है। यदि इसकी चौड़ाई (x + 3) है, तो उसकी लंबाई ज्ञात कीजिए।
(x + 5) प्रेक्षणों का योग x4 – 625 है। इन प्रेक्षणों का माध्य ज्ञात कीजिए।