मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

Niobium crystallises in body-centred cubic structure. If density is 8.55 g cm−3, calculate atomic radius of niobium using its atomic mass 93 u. - Chemistry

Advertisements
Advertisements

प्रश्न

Niobium crystallises in body-centred cubic structure. If density is 8.55 g cm−3, calculate atomic radius of niobium using its atomic mass 93 u.

उत्तर

It is given that the density of niobium, d = 8.55 g cm−3

Atomic mass, M = 93 gmol−1

As the lattice is bcc type, the number of atoms per unit cell, z = 2

We also know that, NA = 6.022 × 1023 mol−1

Applying the relation:

`d = (zM)/(a^3N_A)`

`=>a^3= (zM)/(dN_A)`

= `(2xx93 gmol^(-1))/(8.55 "gcm"^(-3)xx6.022xx10^(23) mol^(-1))`

= 3.612 × 10−23 cm3

So, a = 3.306 × 10−8 cm

For body-centred cubic unit cell:

`r = sqrt3/4a`

=`sqrt3/4xx3.306xx10^(-8) cm`

= 1.432 × 10−8 cm

= 14.32 × 10−9 cm

= 14.32 nm..

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: The Solid State - Exercises [पृष्ठ ३१]

APPEARS IN

एनसीईआरटी Chemistry [English] Class 12
पाठ 1 The Solid State
Exercises | Q 13 | पृष्ठ ३१

संबंधित प्रश्‍न

In body centred cubic structure the space occupied is about

(A) 68%                                                     (B) 53%

(C) 38%                                                     (D) 32%


Calculate the efficiency of packing in case of a metal crystal for body-centred cubic


 An element crystallises in bcc lattic with a cell edge of 3 × 10-8cm. The density of the element is 6.89 g cm-3 . calculate the molar mass of element. (NA = 6.022 × 1023 mol-1)


Packing efficiency in body-centered cubic structure is ____________.


The radius ratio of body-centered cubic structure is ____________.


An element has a cubic structure with a cell edge of 288 pm. The density of the element is 7.2 g cm–3. 208 g of the element has 24.16 × 1023 numbers of atoms. The unit cell of this cubic structure is


A compound formed by element "A" and "B" crystallises in a cubic structure in which A atoms are at the centre of the cube and B atoms are at the face centres. The formula of the compound is:-


Lithium metal crystallises in a body centred cubic crystal. If the length of the side of the unit cell of the crystal is 351 pm, the atomic radius of lithium will be:


In a close-packed body-centred cubic lattice of potassium, the CORRECT relation between the atomic radius (r) of potassium and the edge-length (a) of the cube is ______


The coordination number of an atom in a body-centered cubic structure is ______.

[Assume that the lattice is made up of atoms]


An element has body centered cubic structure with a cell edge of 3.0 A. The density of the metal is 2 amu/Å3. Atoms present in 243 × 1024 amu of the element are ______ × 1024.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×