Advertisements
Advertisements
प्रश्न
Obtain the equation of the line containing the point: (2, 5) and perpendicular to the X−axis.
उत्तर
Equation of a line perpendicular to X-axis
i.e., parallel to Y-axis, is of the form x = h.
Since, the line passes through (2, 5).
∴ h = 2
∴ the equation of the required line is x = 2.
APPEARS IN
संबंधित प्रश्न
Find the slope of the following lines which pass through the point: (2, – 1), (4, 3)
Find the slope of the following lines which pass through the point: (– 2, 3), (5, 7)
Find the slope of the following lines which pass through the point: (2, 3), (2, – 1)
If the X and Y-intercepts of line L are 2 and 3 respectively, then find the slope of line L.
Find the slope of the line whose inclination is 30°.
Find the slope of the line whose inclination is 45°.
A line makes intercepts 3 and 3 on coordinate axes. Find the inclination of the line.
Find the slope of the line which makes angle of 45° with the positive direction of the Y-axis measured clockwise.
Find the value of k for which the points P(k, – 1), Q(2, 1) and R(4, 5) are collinear.
Find the slope of the line which makes an angle of 120° with the positive X-axis.
Find the slope of the line which passes through the points A(–2, 1) and the origin.
Find the value of k: if the slope of the line passing through the points (3, 4), (5, k) is 9.
Find the slope of the line y – x + 3 = 0.
Obtain the equation of the line containing the point: (2, 4) and perpendicular to the Y−axis.
Find the equation of the line: containing the point T(7, 3) and having inclination 90°.