Advertisements
Advertisements
प्रश्न
ΔPQR ∼ ΔAQB, ΔPQR मध्ये, PQ = 3 सेमी, ∠Q = 90°, QR = 4 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:5 असल्यास ΔAQB काढा.
उत्तर
कच्ची आकृती
रचनेच्या पायऱ्या:
- 4 सेमी लांबीची रेख QR काढा.
- ∠Q = 90° घ्या आणि त्यावर 3 सेमीचा कंस काढा. त्या बिंदूला P नाव द्या.
- रेख PR जोडून ΔPQR मिळवा.
- ∠RQX हा लघुकोन मिळेल असा किरण QX काढा.
- किरण QX वर B1, B2, B3, B4, B5, B6, B7 हे बिंदू असे घ्या, की BB1 = B1B2 = B2B3 = B3B4 = B4B5 = B5B6 = B6B7.
- बिंदू R व B7 जोडा.
- बिंदू B5 मधून RB7 ला समांतर रेषा काढा. ही रेषा रेख QR ला बिंदू B मध्ये छेदते.
- B बिंदूतून बाजू PR ला समांतर रेषा काढा. ही रेषा व रेख PQ यांच्या छेदनबिंदूला A नाव द्या.
ΔAQB हा ΔPQR शी समरूप असणारा इष्ट त्रिकोण आहे.
APPEARS IN
संबंधित प्रश्न
जर ΔABC ∼ ΔPQR, `"AB"/"PQ" = 7/5` तर ______
ΔPYQ असा काढा की, PY = 6.3 सेमी, YQ = 7.2 सेमी, PQ = 5.8 सेमी. ΔXYZ हा ΔPYQ शी समरूप त्रिकोण असा काढा की, `"YZ"/"YQ" = 6/5`.
पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.
ΔABC ∼ ΔAQR `"AB"/"AQ" = 7/5` असल्यास, खालीलपैकी कोणता पर्याय सत्य आहे?
रेख AB = 9.7 सेमी लांबीचा काढा. त्यावर बिंदू P असा घ्या, की AP = 3.5 सेमी, A – P – B. बिंदू P मधून रेख AB ला लंब काढा.
ΔRHP ∼ ΔNED, ΔNED मध्ये, NE = 7 सेमी, ∠D = 30°, ∠N = 20° तसेच `"HP"/"ED" = 4/5,` तर ΔRHP व ΔNED काढा.
5 सेमी बाजू असलेला समभुज ΔABC काढा. ΔABC ∼ ΔLMN. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 6:7 असल्यास ΔLMN काढा.
ΔAMT ~ ΔAHE, ΔAMT मध्ये AM = 6.3 सेमी, ∠MAT = 120°, AT = 4.9 सेमी, `"AM"/"HA" = 7/5` तर ΔAHE काढा.
ΔAMT ~ ΔAHE, ΔAMT मध्ये, AM = 6.3 सेमी, ∠TAM = 50°, AT = 5.6 सेमी, `"AM"/"AH" = 7/5`, तर ΔAHE काढा.
ΔRST ∼ ΔUAY, ΔRST मध्ये, RS = 6 सेमी, ∠S = 50°, ST = 7.5 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 5.4 असल्यास ΔUAY काढा.
एक समद्विभुज त्रिकोण असा काढा, की त्याचा पाया 5 सेमी व उंची 4 सेमी आहे. त्या त्रिकोणाला समरूप त्रिकोण असा काढा, की त्याच्या बाजू मूळ त्रिकोणाच्या संगत बाजूंच्या `2/3` पट आहेत.