Advertisements
Advertisements
प्रश्न
ΔRST ∼ ΔUAY, ΔRST मध्ये, RS = 6 सेमी, ∠S = 50°, ST = 7.5 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 5.4 असल्यास ΔUAY काढा.
उत्तर
कच्ची आकृती
ΔRST ∼ ΔUAY
∴ ∠S = ∠A = 50° .............[समरूप त्रिकोणांचे संगत कोन]
∴ `"RS"/"UA" = "ST"/"AY" = "RT"/"UY"` ......(i) [समरूप त्रिकोणांच्या संगत बाजू]
संगत बाजूंचे गुणोत्तर 5:4 असल्यामुळे,
∴ `"RS"/"UA" = "ST"/"AY" = "RT"/"UY" = 5/4` ....[(i) वरून]
∴ `6/"UA" = 7.5/"AY" = 5/4` .......…(ii)
आता, `6/"UA" = 5/4` ..........[(ii) वरून]
∴ 5 × UA = 6 × 4
∴ UA = `(6 xx 4)/5`
∴ UA = 4.8 सेमी
आता, `7.5/"AY" = 5/4` .........[(ii) वरून]
∴ AY × 5 = 7.5 × 4
∴ AY = `(7.5 xx 4)/5`
∴ AY = 6 सेमी
∴ ΔUAY मध्ये, UA = 4.8 सेमी, AY = 6 सेमी व ∠A = 50°
APPEARS IN
संबंधित प्रश्न
ΔRST ~ ΔXYZ, ΔRST मध्ये RS = 4.5 सेमी, ∠RST = 40°, ST = 5.7 सेमी आणि `"RS"/"XY" = 3/5` तर ΔRST व ΔXYZ काढा.
ΔPYQ असा काढा की, PY = 6.3 सेमी, YQ = 7.2 सेमी, PQ = 5.8 सेमी. ΔXYZ हा ΔPYQ शी समरूप त्रिकोण असा काढा की, `"YZ"/"YQ" = 6/5`.
पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.
व्यासाच्या अंत्यबिंदूतून वर्तुळाला काढलेल्या स्पर्शिका परस्परांना ______ असतात.
पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.
आकृतीमध्ये ΔABC ∼ ΔADE आहे, तर त्यांच्या संगत बाजूचे गुणोत्तर ______ आहे.
ΔPQR ∼ ΔABC, ΔPQR मध्ये PQ = 3.6 सेमी, QR = 4 सेमी, PR = 4.2 सेमी आहे. त्रिकोणाच्या संगत बाजूचे गुणोत्तर 3:2 असल्यास ΔABC काढा.
ΔAMT ~ ΔAHE, ΔAMT मध्ये AM = 6.3 सेमी, ∠MAT = 120°, AT = 4.9 सेमी, `"AM"/"HA" = 7/5` तर ΔAHE काढा.
ΔRHP ∼ ΔNED, ΔNED मध्ये, NE = 7 सेमी, ∠D = 30°, ∠N = 20° तसेच `"HP"/"ED" = 4/5,` तर ΔRHP काढा.
ΔXYZ ∼ ΔPYR. ΔXYZ मध्ये, XY = 4.5 सेमी, ∠Y = 60°, YZ = 5.1 सेमी व `"XY"/"PY" = 4/7,` तर ΔXYZ व ΔPYR काढा.
एक समद्विभुज त्रिकोण असा काढा, की त्याचा पाया 5 सेमी व उंची 4 सेमी आहे. त्या त्रिकोणाला समरूप त्रिकोण असा काढा, की त्याच्या बाजू मूळ त्रिकोणाच्या संगत बाजूंच्या `2/3` पट आहेत.
ΔPQR मध्ये, ∠P = 40°, PQ ≅ PR, QR = 7 सेमी. ΔXYZ ∼ ΔPQR, XY:PQ = 3:2 असल्यास ΔXYZ काढा.