मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (मराठी माध्यम) इयत्ता १० वी

ΔPQR ∼ ΔABC, ΔPQR मध्ये PQ = 3.6 सेमी, QR = 4 सेमी, PR = 4.2 सेमी आहे. त्रिकोणाच्या संगत बाजूचे गुणोत्तर 3:2 असल्यास ΔABC काढा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

ΔPQR ∼ ΔABC, ΔPQR मध्ये PQ = 3.6 सेमी, QR = 4 सेमी, PR = 4.2 सेमी आहे. त्रिकोणाच्या संगत बाजूचे गुणोत्तर 3:2 असल्यास ΔABC काढा. 

बेरीज

उत्तर

कच्ची आकृती

विश्लेषण:

ΔPQR ∼ ΔABC .............[पक्ष] 

∴ `"PQ"/"AB" = "QR"/"BC" = "PR"/"AC"` .......[समरूप त्रिकोणांच्या संगत बाजू]

∴ `"PQ"/"AB" = "QR"/"BC" = "PR"/"AC" = 3/2`  ..........[पक्ष]

∴ `3.6/"AB" = 4/"BC" = 4.2/"AC" = 3/2`

∴ `3.6/"AB" = 3/2`

∴ AB = `(3.6 xx 2)/3`

∴ AB = 2.4 सेमी

तसेच, `4/"BC" = 3/2`

∴ BC = `(4 xx 2)/2`

∴ BC = 2.7 सेमी 

∴ व `4.2/"AC" = 3/2`

∴ AC = `(4.2 xx 2)/3`

∴ AC = 2.8 सेमी

रचनेच्या पायऱ्या: 

क्र. ΔABC साठी
i. 2.8 सेमी लांबीची रेख AC काढा.
ii. बिंदू A वरून 2.4 सेमी लांबीचा कंस काढा.
iii. बिंदू C वरून 2.7 सेमी लांबीचा कंस काढा.
iv. रेख AB आणि रेख CB जोडा.

ΔABC हा ΔPQR शी समरूप असणारा इष्ट त्रिकोण आहे.

shaalaa.com
समरूप त्रिकोणाची रचना
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: भौमितिक रचना - Q ३ (ब)

APPEARS IN

संबंधित प्रश्‍न

ΔRST ~ ΔXYZ, ΔRST मध्ये RS = 4.5 सेमी, ∠RST = 40°, ST = 5.7 सेमी आणि `"RS"/"XY" = 3/5` तर ΔRST व ΔXYZ काढा.


पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.

ΔPQR ∼ ΔABC, `"PR"/"AC" = 5/7` तर ______ 


ΔABC हा 60° काढा व तो दुभागा. 


∠PQR हा 115° काढा. त्याचे दोन एकरूप कोनांत विभाजन करा. 


ΔABC ∼ ΔPBQ, ΔABC मध्ये , AB = 3 सेमी, ∠B = 90°, BC = 4 सेमी व त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:4 असल्यास ΔPBQ काढा.


ΔABC ∼ ΔPBQ, ΔABC मध्ये, AB = 4 सेमी, BC = 5 सेमी, AC = 6 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 2:3 असल्यास ΔPBQ काढा.


ΔAMT ~ ΔAHE, ΔAMT मध्ये AM = 6.3 सेमी, ∠MAT = 120°, AT = 4.9 सेमी, `"AM"/"HA" = 7/5` तर ΔAHE काढा. 


ΔRST ∼ ΔUAY, ΔRST मध्ये, RS = 6 सेमी, ∠S = 50°, ST = 7.5 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 5.4 असल्यास ΔUAY काढा. 


ΔPQR ∼ ΔAQB, ΔPQR मध्ये, PQ = 3 सेमी, ∠Q = 90°, QR = 4 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:5 असल्यास ΔAQB काढा. 


एक समद्विभुज त्रिकोण असा काढा, की त्याचा पाया 5 सेमी व उंची 4 सेमी आहे. त्या त्रिकोणाला समरूप त्रिकोण असा काढा, की त्याच्या बाजू मूळ त्रिकोणाच्या संगत बाजूंच्या `2/3` पट आहेत.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×