Advertisements
Advertisements
Question
ΔPQR ∼ ΔABC, ΔPQR मध्ये PQ = 3.6 सेमी, QR = 4 सेमी, PR = 4.2 सेमी आहे. त्रिकोणाच्या संगत बाजूचे गुणोत्तर 3:2 असल्यास ΔABC काढा.
Solution
कच्ची आकृती
विश्लेषण:
ΔPQR ∼ ΔABC .............[पक्ष]
∴ `"PQ"/"AB" = "QR"/"BC" = "PR"/"AC"` .......[समरूप त्रिकोणांच्या संगत बाजू]
∴ `"PQ"/"AB" = "QR"/"BC" = "PR"/"AC" = 3/2` ..........[पक्ष]
∴ `3.6/"AB" = 4/"BC" = 4.2/"AC" = 3/2`
∴ `3.6/"AB" = 3/2`
∴ AB = `(3.6 xx 2)/3`
∴ AB = 2.4 सेमी
तसेच, `4/"BC" = 3/2`
∴ BC = `(4 xx 2)/2`
∴ BC = 2.7 सेमी
∴ व `4.2/"AC" = 3/2`
∴ AC = `(4.2 xx 2)/3`
∴ AC = 2.8 सेमी
रचनेच्या पायऱ्या:
क्र. | ΔABC साठी |
i. | 2.8 सेमी लांबीची रेख AC काढा. |
ii. | बिंदू A वरून 2.4 सेमी लांबीचा कंस काढा. |
iii. | बिंदू C वरून 2.7 सेमी लांबीचा कंस काढा. |
iv. | रेख AB आणि रेख CB जोडा. |
ΔABC हा ΔPQR शी समरूप असणारा इष्ट त्रिकोण आहे.
APPEARS IN
RELATED QUESTIONS
ΔABC ∼ ΔLMN, ΔABC असा काढा, की AB = 5.5 सेमी, BC = 6 सेमी, CA = 4.5 सेमी आणि `"BC"/"MN" = 5/4` तर ΔABC व ΔLMN काढा.
ΔRST ~ ΔXYZ, ΔRST मध्ये RS = 4.5 सेमी, ∠RST = 40°, ST = 5.7 सेमी आणि `"RS"/"XY" = 3/5` तर ΔRST व ΔXYZ काढा.
ΔAMT ~ ΔAHE, ΔAMT मध्ये AM = 6.3 सेमी, ∠TAM = 50°, AT = 5.6 सेमी आणि `"AM"/"AH" = 7/5` तर ΔAHE काढा.
जर ΔABC ~ ΔLBN, ΔABC मध्ये AB= 5.1 सेमी, ∠B = 40°, BC = 4.8 सेमी, `"AC"/"LN" = 4/7` तर ΔABC व ΔLBN काढा.
पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.
ΔLMN ∼ ΔHIJ व `"LM"/"HI" = 2/3`, तर ______
पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.
ΔABC ∼ ΔAQR `"AB"/"AQ" = 7/5` असल्यास, खालीलपैकी कोणता पर्याय सत्य आहे?
ΔAMT ~ ΔAHE, ΔAMT मध्ये AM = 6.3 सेमी, ∠MAT = 120°, AT = 4.9 सेमी, `"AM"/"HA" = 7/5` तर ΔAHE काढा.
ΔABC ~ ΔPBR, BC = 8 सेमी, AC = 10 सेमी , ∠B = 90°, `"BC"/"BR" = 5/4`, तर ΔPBR काढा.
ΔAMT ~ ΔAHE, ΔAMT मध्ये, AM = 6.3 सेमी, ∠TAM = 50°, AT = 5.6 सेमी, `"AM"/"AH" = 7/5`, तर ΔAHE काढा.
चौरसाचा कर्ण `sqrt50` सेमी असून असे वर्तुळ काढा, की जे चौरसाच्या सर्व बाजूंना स्पर्श करेल. वर्तुळाची त्रिज्या मोजून लिहा.