Advertisements
Advertisements
Question
ΔABC ~ ΔPBR, BC = 8 सेमी, AC = 10 सेमी , ∠B = 90°, `"BC"/"BR" = 5/4`, तर ΔPBR काढा.
Solution
विश्लेषण:
कच्ची आकृती
∆ABC मध्ये, ∠B = 90° ......[पक्ष]
∴ AC2 = AB2 + BC2 ......…[पायथागोरसच्या प्रमेयानुसार]
∴ 102 = AB2 + 82
∴ AB2 = 100 – 64
∴ AB2 = 36
∴ AB = 6 सेमी ............[दोन्ही बाजूंचे वर्गमूळ काढून]
रचनेच्या पायऱ्या:
- 8 सेमी लांबीचा रेख BC काढा.
- ∠B = 90° घ्या आणि त्यावर 6 सेमीचा कंस काढा. त्या बिंदूला A नाव द्या.
- रेख AC जोडून ∆ABC मिळवा.
- ∠CBX हा लघुकोन मिळेल असा किरण BX काढा.
- किरण BX वर B1, B2, B3, B4, B5 हे बिंदू असे घ्या, की BB1 = B1B2 = B2B3 = B3B4 = B4B5.
- बिंदू C व B5 जोडा.
- बिंदू B4 मधून CB5 ला समांतर रेषा काढा. ही रेषा रेख BC ला बिंदू R मध्ये छेदते.
- R बिंदूतून बाजू AC ला समांतर रेषा काढा. ही रेषा व रेख AB यांच्या छेदनबिंदूला P नाव द्या.
∆PBR हा ∆ABC शी समरूप असणारा इष्ट त्रिकोण आहे.
APPEARS IN
RELATED QUESTIONS
पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.
आकृतीमध्ये ΔABC ∼ ΔADE आहे, तर त्यांच्या संगत बाजूचे गुणोत्तर ______ आहे.
पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.
ΔPQR ∼ ΔABC, `"PR"/"AC" = 5/7` तर ______
∠PQR हा 115° काढा. त्याचे दोन एकरूप कोनांत विभाजन करा.
रेख AB = 9.7 सेमी लांबीचा काढा. त्यावर बिंदू P असा घ्या, की AP = 3.5 सेमी, A – P – B. बिंदू P मधून रेख AB ला लंब काढा.
ΔABC ∼ ΔPBQ, ΔABC मध्ये , AB = 3 सेमी, ∠B = 90°, BC = 4 सेमी व त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:4 असल्यास ΔPBQ काढा.
ΔABC ∼ ΔLMN, ΔABC मध्ये, AB = 5.5 सेमी, BC = 6 सेमी, CA = 5.5 सेमी, MN = 4.8 सेमी, तर ΔABC व ΔLMN काढा.
ΔRST ∼ ΔUAY, ΔRST मध्ये, RS = 6 सेमी, ∠S = 50°, ST = 7.5 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 5.4 असल्यास ΔUAY काढा.
ΔSHR ∼ ΔSVU, ΔSHR मध्ये SH = 4.5 सेमी, HR = 5.2 सेमी, SR = 5.8 सेमी, `"HS"/"SV" = 3/5`, तर ΔSVU काढा.
ΔPQR ∼ ΔAQB, ΔPQR मध्ये, PQ = 3 सेमी, ∠Q = 90°, QR = 4 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:5 असल्यास ΔAQB काढा.
चौरसाचा कर्ण `sqrt50` सेमी असून असे वर्तुळ काढा, की जे चौरसाच्या सर्व बाजूंना स्पर्श करेल. वर्तुळाची त्रिज्या मोजून लिहा.