Advertisements
Advertisements
Question
पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.
ΔLMN ∼ ΔHIJ व `"LM"/"HI" = 2/3`, तर ______
Options
ΔLMN लहान त्रिकोण आहे.
ΔHIJ लहान त्रिकोण आहे.
दोन्ही त्रिकोण एकरूप आहेत.
सांगता येत नाही.
Solution
ΔLMN ∼ ΔHIJ व `"LM"/"HI" = 2/3`, तर ΔLMN लहान त्रिकोण आहे.
APPEARS IN
RELATED QUESTIONS
ΔABC ∼ ΔLMN, ΔABC असा काढा, की AB = 5.5 सेमी, BC = 6 सेमी, CA = 4.5 सेमी आणि `"BC"/"MN" = 5/4` तर ΔABC व ΔLMN काढा.
ΔPQR ~ ΔLTR, ΔPQR मध्ये PQ = 4.2 सेमी, QR = 5.4 सेमी, PR = 4.8 सेमी आणि `"PQ"/"LT"` = `3/4` तर ΔPQR व ΔLTR काढा.
ΔPYQ असा काढा की, PY = 6.3 सेमी, YQ = 7.2 सेमी, PQ = 5.8 सेमी. ΔXYZ हा ΔPYQ शी समरूप त्रिकोण असा काढा की, `"YZ"/"YQ" = 6/5`.
ΔABC ∼ ΔPBQ, ΔABC मध्ये , AB = 3 सेमी, ∠B = 90°, BC = 4 सेमी व त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:4 असल्यास ΔPBQ काढा.
ΔPQR ∼ ΔABC, ΔPQR मध्ये PQ = 3.6 सेमी, QR = 4 सेमी, PR = 4.2 सेमी आहे. त्रिकोणाच्या संगत बाजूचे गुणोत्तर 3:2 असल्यास ΔABC काढा.
ΔABC ∼ ΔPBQ, ΔABC मध्ये, AB = 4 सेमी, BC = 5 सेमी, AC = 6 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 2:3 असल्यास ΔPBQ काढा.
ΔABC ∼ ΔLMN, ΔABC मध्ये, AB = 5.5 सेमी, BC = 6 सेमी, CA = 5.5 सेमी, MN = 4.8 सेमी, तर ΔABC व ΔLMN काढा.
ΔAMT ~ ΔAHE, ΔAMT मध्ये, AM = 6.3 सेमी, ∠TAM = 50°, AT = 5.6 सेमी, `"AM"/"AH" = 7/5`, तर ΔAHE काढा.
ΔPQR ∼ ΔAQB, ΔPQR मध्ये, PQ = 3 सेमी, ∠Q = 90°, QR = 4 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:5 असल्यास ΔAQB काढा.
ΔXYZ ∼ ΔPYR. ΔXYZ मध्ये, XY = 4.5 सेमी, ∠Y = 60°, YZ = 5.1 सेमी व `"XY"/"PY" = 4/7,` तर ΔXYZ व ΔPYR काढा.