Advertisements
Advertisements
Question
ΔPYQ असा काढा की, PY = 6.3 सेमी, YQ = 7.2 सेमी, PQ = 5.8 सेमी. ΔXYZ हा ΔPYQ शी समरूप त्रिकोण असा काढा की, `"YZ"/"YQ" = 6/5`.
Solution
कच्ची आकृती
विश्लेषण:
आकृतीत दाखवल्याप्रमाणे,
समजा, Y - Q - Z व Y – P – X.
ΔXYZ ∼ ΔPYQ ....[पक्ष]
∴ ∠XYZ ≅ ∠PYQ ....[समरूप त्रिकोणांचे संगत कोन]
`"XY"/"PY" = "YZ"/"YQ" = "XZ"/"PQ"` .....(i) [समरूप त्रिकोणांच्या संगत बाजू]
परंतू, `"YZ"/"YQ" = 6/5` ....(ii) [पक्ष]
∴ `"XY"/"PY" = "YZ"/"YQ" = "XZ"/"PQ" = 6/5` ......[(i) व (ii) वरून]
∴ ΔXYZ च्या बाजू ΔPYQ च्या संगत बाजूंपेक्षा मोठ्या आहेत.
∴ जर रेख YQ चे 5 समान भाग केले, तर रेख YZ ही त्यातील एका भागाच्या 6 पट एवढ्या लांबीची असेल. म्हणूनच, जर ΔPYQ काढला, तर बिंदू Z हा बाजू YQ वर Y पासून 6 भाग अंतरावर असेल. आता, बिंदू Z मधून PQ ला समांतर काढलेली रेषा व किरण YP यांचा छेदनबिंदू X हा आहे. ΔXYZ हा ΔPYQ शी समरूप असलेला इष्ट त्रिकोण आहे.
रचनेच्या पायऱ्या:
i. दिलेल्या मापाचा ΔPYQ काढा. बाजू YQ शी लघुकोन करणारा किरण YT काढा.
ii. कंपासमध्ये सोयीस्कर अंतर घेऊन किरण YT वर Y1, Y2, Y3, Y4, Y5 आणि Y6 हे 6 बिंदू असे घ्या, की YY1 = Y1Y2 = Y2Y3 = Y3Y4 = Y4Y5 = Y5Y6.
iii. Y5Q जोडा. Y6 मधून Y5Q ला समांतर रेषा काढा. ही रेषा किरण YQ ला बिंदू Z मध्ये छेदते.
iv. बिंदू Z मधून बाजू PQ ला समांतर रेषा काढा. ही रेषा व किरण YP यांच्या छेदनबिंदूला X नाव द्या.
ΔXYZ हा ΔPYQ चा इष्ट समरूप त्रिकोण आहे.
APPEARS IN
RELATED QUESTIONS
ΔABC ∼ ΔLMN, ΔABC असा काढा, की AB = 5.5 सेमी, BC = 6 सेमी, CA = 4.5 सेमी आणि `"BC"/"MN" = 5/4` तर ΔABC व ΔLMN काढा.
ΔRST ~ ΔXYZ, ΔRST मध्ये RS = 4.5 सेमी, ∠RST = 40°, ST = 5.7 सेमी आणि `"RS"/"XY" = 3/5` तर ΔRST व ΔXYZ काढा.
पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.
ΔLMN ∼ ΔHIJ व `"LM"/"HI" = 2/3`, तर ______
ΔABC हा 60° काढा व तो दुभागा.
रेख AB = 9.7 सेमी लांबीचा काढा. त्यावर बिंदू P असा घ्या, की AP = 3.5 सेमी, A – P – B. बिंदू P मधून रेख AB ला लंब काढा.
ΔABC ∼ ΔPBQ, ΔABC मध्ये , AB = 3 सेमी, ∠B = 90°, BC = 4 सेमी व त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 7:4 असल्यास ΔPBQ काढा.
ΔABC ∼ ΔPBQ, ΔABC मध्ये, AB = 4 सेमी, BC = 5 सेमी, AC = 6 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 2:3 असल्यास ΔPBQ काढा.
ΔRHP ∼ ΔNED, ΔNED मध्ये, NE = 7 सेमी, ∠D = 30°, ∠N = 20° तसेच `"HP"/"ED" = 4/5,` तर ΔRHP काढा.
ΔRST ∼ ΔUAY, ΔRST मध्ये, RS = 6 सेमी, ∠S = 50°, ST = 7.5 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 5.4 असल्यास ΔUAY काढा.
ΔPQR मध्ये, ∠P = 40°, PQ ≅ PR, QR = 7 सेमी. ΔXYZ ∼ ΔPQR, XY:PQ = 3:2 असल्यास ΔXYZ काढा.