मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord - Mathematics

Advertisements
Advertisements

प्रश्न

Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord

बेरीज

उत्तर

A circle with centre at O.

AB is chord of the circle and OP bisects AB

(ie) AP = PB

To prove `bar"OP"` ⊥ `bar"AB"` O is the position vector

∴ `bar"OA" = bar"OB"` = Radius

Position vector of P

`bar"OP" = (bar"OA" + bar"OB")/2`

`bar"OP"*bar"AB" = bar"OP" * (bar"OB" - bar"OA")`

= `((bar"OB" + bar"OA")/2)* (bar"OB" - bar"OA")`

= `1/2[|bar"OB"|^2 - |bar"OA"|^2]`

= 0    ........`(∵ bar"OA" = bar"OB" = "Radius")`

∴ `bar"OP"` ⊥ `bar"AB"`

Hence proved

shaalaa.com
Scalar Product and Vector Product
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Applications of Vector Algebra - Exercise 6.1 [पृष्ठ २३१]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 6 Applications of Vector Algebra
Exercise 6.1 | Q 1 | पृष्ठ २३१

संबंधित प्रश्‍न

Prove by vector method that the diagonals of a rhombus bisect each other at right angles


Using vector method, prove that if the diagonals of a parallelogram are equal, then it is a rectangle


Prove by vector method that the area of the quadrilateral ABCD having diagonals AC and BD is `1/2 |bar"AC" xx bar"BD"|`


If G is the centroid of a ΔABC, prove that (area of ΔGAB) = (area of ΔGBC) = (area of ΔGCA) = `1/3` (area of ΔABC)


Using vector method, prove that cos(α – β) = cos α cos β + sin α sin β


A particle acted on by constant forces `8hat"i" + 2hat"j" - 6hat"k"` and `6hat"i" + 2hat"j" - 2hat"k"` is displaced from the point (1, 2, 3) to the point (5, 4, 1). Find the total work done by the forces


Find the torque of the resultant of the three forces represented by `- 3hat"i" + 6hat"j" - 3hat"k", 4hat"i" - 10hat"j" + 12hat"k"` and `4hat"i" + 7hat"j"` acting at the point with position vector `8hat"i" - 6hat"j" - 4hat"k"` about the point with position vector `18hat"i" + 3hat"j" - 9hat"k"`


Choose the correct alternative:

If `vec"a"*vec"b" = vec"b"*vec"c" = vec"c"*vec"a"` = 0, then the value of `[vec"a", vec"b", vec"c"]` is


Let `veca = αhati + 3hatj - hatk, vecb = 3hati - βhatj + 4hatk` and `vecc = hati + 2hatj - 2hatk` where α, β ∈ R, be three vectors. If the projection of a `veca` on `vecc` is `10/3` and `vecb xx vecc = -6hati + 10hatj + 7hatk`, then the value of α + β is equal to ______.


Let A, B, C be three points whose position vectors respectively are 

`vec"a" = hat"i" + 4hat"j" + 3hat"k"`

`vec"b" = 2hat"i" + αhat"j" + 4hat"k", α ∈ "R"`

`vec"c" = 3hat"i" - 2hat"j" + 5hat"k"`

If α is the smallest positive integer for which `vec"a", vec"b", vec"c"` are noncollinear, then the length of the median, in ΔABC, through A is ______.


Let `veca = 2hati + hatj - 2hatk` and `vecb = hati + hatj`. If `vecc` is a vector such that `veca.vecc = |vecc|, |vecc - veca| = 2sqrt(2)`, angle between `(veca xx vecb)` and `vecc` is `π/6`, then the value of `|(veca xx vecb) xx vecc|` is ______.


Let `veca, vecb, vecc` be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector `veca + vecb + vecc`. Then, 36 cos22θ is equal to ______.


Let `veca, vecb` and `vecc` be three unit vectors such that `|veca - vecb|^2 + |veca - vecc|^2` = 8. Then find the value of `|veca + 2vecb|^2 + |veca + 2vecc|^2`


The vector `vecp` perpendicular to the vectors `veca = 2hati + 3hatj - hatk` and `vecb = hati - 2hatj + 3hatk` and satisfying the condition `vecp.(2hati - hatj + hatk)` = –6 is ______.


The value of `[veca + 2vecb - vecc, veca - vecb, veca - vecb - vecc]` is equal to the box product ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×