मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Prove by vector method that the area of the quadrilateral ABCD having diagonals AC and BD is ACBD12|AC¯×BD¯| - Mathematics

Advertisements
Advertisements

प्रश्न

Prove by vector method that the area of the quadrilateral ABCD having diagonals AC and BD is `1/2 |bar"AC" xx bar"BD"|`

बेरीज

उत्तर


Vector area of quadrilateral ABCD = {Vector area of ∆ABC} + {Vector area of ∆ACD}

= `1/2 (bar"AB" xx bar"AC") + 1/2(bar"AC" xx bar"AD")`

= `- 1/2 (bar"AC" xx bar"AB") + 1/2(bar"AC" xx bar"AD")`

= `1/2bar"AC" xx [- bar"AB" + bar"AD"]`

= `1/2bar"AC" xx [bar"BA" + bar"AD"]`

= `1/2 bar"AC" xx bar"BD"`

∴ The area of the quadrilateral ABCD = `1/2|bar"AC" xx bar"BD"|`

shaalaa.com
Scalar Product and Vector Product
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Applications of Vector Algebra - Exercise 6.1 [पृष्ठ २३१]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 6 Applications of Vector Algebra
Exercise 6.1 | Q 6 | पृष्ठ २३१

संबंधित प्रश्‍न

Prove by vector method that the median to the base of an isosceles triangle is perpendicular to the base


Prove by vector method that the diagonals of a rhombus bisect each other at right angles


Using vector method, prove that if the diagonals of a parallelogram are equal, then it is a rectangle


Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area


Using vector method, prove that cos(α – β) = cos α cos β + sin α sin β


Forces of magnitudes `5sqrt(2)` and `10sqrt(2)` units acting in the directions `3hat"i" + 4hat"j" + 5hat"k"` and `10hat"i" + 6hat"j" - 8hat"k"` respectively, act on a particle which is displaced from the point with position vector `4hat"i" - 3hat"j" - 2hat"k"` to the point with position vector `6hat"i" + hat"j" - 3hat"k"`. Find the work done by the forces


Find the magnitude and direction cosines of the torque of a force represented by `3hat"i" + 4hat"j" - 5hat"k"` about the point with position vector `2hat"i" - 3hat"j" + 4hat"k"`  acting through a point whose position vector is `4hat"i" + 2hat"j" - 3hat"k"`


Choose the correct alternative:

If `vec"a"` and `vec"b"` are parallel vectors, then `[vec"a", vec"c", vec"b"]` is equal to


Choose the correct alternative:

If a vector `vecalpha` lies in the plane of `vecbeta` and `vecϒ`, then


Choose the correct alternative:

If `vec"a"*vec"b" = vec"b"*vec"c" = vec"c"*vec"a"` = 0, then the value of `[vec"a", vec"b", vec"c"]` is


Let `veca = hati - 2hatj + 3hatk, vecb = hati + hatj + hatk` and `vecc` be a vector such that `veca + (vecb xx vecc) = vec0` and `vecb.vecc` = 5. Then, the value of `3(vecc.veca)` is equal to ______.


Let `veca = 2hati + hatj - 2hatk` and `vecb = hati + hatj`. If `vecc` is a vector such that `veca.vecc = |vecc|, |vecc - veca| = 2sqrt(2)`, angle between `(veca xx vecb)` and `vecc` is `π/6`, then the value of `|(veca xx vecb) xx vecc|` is ______.


Let `veca, vecb, vecc` be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector `veca + vecb + vecc`. Then, 36 cos22θ is equal to ______.


The value of `[veca + 2vecb - vecc, veca - vecb, veca - vecb - vecc]` is equal to the box product ______.


Let a, b, c ∈ R be such that a2 + b2 + c2 = 1. If `a cos θ = b cos(θ + (2π)/3) = c cos(θ + (4π)/3)`, where θ = `π/9`, then the angle between the vectors `ahati + bhatj + chatk` and `bhati + chatj + ahatk` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×