हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Prove by vector method that the area of the quadrilateral ABCD having diagonals AC and BD is ACBD12|AC¯×BD¯| - Mathematics

Advertisements
Advertisements

प्रश्न

Prove by vector method that the area of the quadrilateral ABCD having diagonals AC and BD is `1/2 |bar"AC" xx bar"BD"|`

योग

उत्तर


Vector area of quadrilateral ABCD = {Vector area of ∆ABC} + {Vector area of ∆ACD}

= `1/2 (bar"AB" xx bar"AC") + 1/2(bar"AC" xx bar"AD")`

= `- 1/2 (bar"AC" xx bar"AB") + 1/2(bar"AC" xx bar"AD")`

= `1/2bar"AC" xx [- bar"AB" + bar"AD"]`

= `1/2bar"AC" xx [bar"BA" + bar"AD"]`

= `1/2 bar"AC" xx bar"BD"`

∴ The area of the quadrilateral ABCD = `1/2|bar"AC" xx bar"BD"|`

shaalaa.com
Scalar Product and Vector Product
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Applications of Vector Algebra - Exercise 6.1 [पृष्ठ २३१]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 6 Applications of Vector Algebra
Exercise 6.1 | Q 6 | पृष्ठ २३१

संबंधित प्रश्न

Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord


Prove by vector method that the median to the base of an isosceles triangle is perpendicular to the base


Prove by vector method that an angle in a semi-circle is a right angle


Prove by vector method that the diagonals of a rhombus bisect each other at right angles


If G is the centroid of a ΔABC, prove that (area of ΔGAB) = (area of ΔGBC) = (area of ΔGCA) = `1/3` (area of ΔABC)


A particle acted on by constant forces `8hat"i" + 2hat"j" - 6hat"k"` and `6hat"i" + 2hat"j" - 2hat"k"` is displaced from the point (1, 2, 3) to the point (5, 4, 1). Find the total work done by the forces


Forces of magnitudes `5sqrt(2)` and `10sqrt(2)` units acting in the directions `3hat"i" + 4hat"j" + 5hat"k"` and `10hat"i" + 6hat"j" - 8hat"k"` respectively, act on a particle which is displaced from the point with position vector `4hat"i" - 3hat"j" - 2hat"k"` to the point with position vector `6hat"i" + hat"j" - 3hat"k"`. Find the work done by the forces


Find the magnitude and direction cosines of the torque of a force represented by `3hat"i" + 4hat"j" - 5hat"k"` about the point with position vector `2hat"i" - 3hat"j" + 4hat"k"`  acting through a point whose position vector is `4hat"i" + 2hat"j" - 3hat"k"`


Find the torque of the resultant of the three forces represented by `- 3hat"i" + 6hat"j" - 3hat"k", 4hat"i" - 10hat"j" + 12hat"k"` and `4hat"i" + 7hat"j"` acting at the point with position vector `8hat"i" - 6hat"j" - 4hat"k"` about the point with position vector `18hat"i" + 3hat"j" - 9hat"k"`


Choose the correct alternative:

If `vec"a"` and `vec"b"` are parallel vectors, then `[vec"a", vec"c", vec"b"]` is equal to


Let A, B, C be three points whose position vectors respectively are 

`vec"a" = hat"i" + 4hat"j" + 3hat"k"`

`vec"b" = 2hat"i" + αhat"j" + 4hat"k", α ∈ "R"`

`vec"c" = 3hat"i" - 2hat"j" + 5hat"k"`

If α is the smallest positive integer for which `vec"a", vec"b", vec"c"` are noncollinear, then the length of the median, in ΔABC, through A is ______.


Let `veca = hati - 2hatj + 3hatk, vecb = hati + hatj + hatk` and `vecc` be a vector such that `veca + (vecb xx vecc) = vec0` and `vecb.vecc` = 5. Then, the value of `3(vecc.veca)` is equal to ______.


Let `veca, vecb` and `vecc` be three unit vectors such that `|veca - vecb|^2 + |veca - vecc|^2` = 8. Then find the value of `|veca + 2vecb|^2 + |veca + 2vecc|^2`


The vector `vecp` perpendicular to the vectors `veca = 2hati + 3hatj - hatk` and `vecb = hati - 2hatj + 3hatk` and satisfying the condition `vecp.(2hati - hatj + hatk)` = –6 is ______.


The value of `[veca + 2vecb - vecc, veca - vecb, veca - vecb - vecc]` is equal to the box product ______.


Let a, b, c ∈ R be such that a2 + b2 + c2 = 1. If `a cos θ = b cos(θ + (2π)/3) = c cos(θ + (4π)/3)`, where θ = `π/9`, then the angle between the vectors `ahati + bhatj + chatk` and `bhati + chatj + ahatk` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×