English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Prove by vector method that the area of the quadrilateral ABCD having diagonals AC and BD is ACBD12|AC¯×BD¯| - Mathematics

Advertisements
Advertisements

Question

Prove by vector method that the area of the quadrilateral ABCD having diagonals AC and BD is `1/2 |bar"AC" xx bar"BD"|`

Sum

Solution


Vector area of quadrilateral ABCD = {Vector area of ∆ABC} + {Vector area of ∆ACD}

= `1/2 (bar"AB" xx bar"AC") + 1/2(bar"AC" xx bar"AD")`

= `- 1/2 (bar"AC" xx bar"AB") + 1/2(bar"AC" xx bar"AD")`

= `1/2bar"AC" xx [- bar"AB" + bar"AD"]`

= `1/2bar"AC" xx [bar"BA" + bar"AD"]`

= `1/2 bar"AC" xx bar"BD"`

∴ The area of the quadrilateral ABCD = `1/2|bar"AC" xx bar"BD"|`

shaalaa.com
Scalar Product and Vector Product
  Is there an error in this question or solution?
Chapter 6: Applications of Vector Algebra - Exercise 6.1 [Page 231]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 6 Applications of Vector Algebra
Exercise 6.1 | Q 6 | Page 231

RELATED QUESTIONS

Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord


Prove by vector method that an angle in a semi-circle is a right angle


Using vector method, prove that if the diagonals of a parallelogram are equal, then it is a rectangle


Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area


If G is the centroid of a ΔABC, prove that (area of ΔGAB) = (area of ΔGBC) = (area of ΔGCA) = `1/3` (area of ΔABC)


Prove by vector method that sin(α + ß) = sin α cos ß + cos α sin ß


A particle acted on by constant forces `8hat"i" + 2hat"j" - 6hat"k"` and `6hat"i" + 2hat"j" - 2hat"k"` is displaced from the point (1, 2, 3) to the point (5, 4, 1). Find the total work done by the forces


Forces of magnitudes `5sqrt(2)` and `10sqrt(2)` units acting in the directions `3hat"i" + 4hat"j" + 5hat"k"` and `10hat"i" + 6hat"j" - 8hat"k"` respectively, act on a particle which is displaced from the point with position vector `4hat"i" - 3hat"j" - 2hat"k"` to the point with position vector `6hat"i" + hat"j" - 3hat"k"`. Find the work done by the forces


Find the torque of the resultant of the three forces represented by `- 3hat"i" + 6hat"j" - 3hat"k", 4hat"i" - 10hat"j" + 12hat"k"` and `4hat"i" + 7hat"j"` acting at the point with position vector `8hat"i" - 6hat"j" - 4hat"k"` about the point with position vector `18hat"i" + 3hat"j" - 9hat"k"`


Choose the correct alternative:

If `vec"a"` and `vec"b"` are parallel vectors, then `[vec"a", vec"c", vec"b"]` is equal to


Choose the correct alternative:

If a vector `vecalpha` lies in the plane of `vecbeta` and `vecϒ`, then


Choose the correct alternative:

If `vec"a"*vec"b" = vec"b"*vec"c" = vec"c"*vec"a"` = 0, then the value of `[vec"a", vec"b", vec"c"]` is


Let `veca = 2hati + hatj - 2hatk` and `vecb = hati + hatj`. If `vecc` is a vector such that `veca.vecc = |vecc|, |vecc - veca| = 2sqrt(2)`, angle between `(veca xx vecb)` and `vecc` is `π/6`, then the value of `|(veca xx vecb) xx vecc|` is ______.


Let `veca, vecb, vecc` be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector `veca + vecb + vecc`. Then, 36 cos22θ is equal to ______.


Let `veca, vecb` and `vecc` be three unit vectors such that `|veca - vecb|^2 + |veca - vecc|^2` = 8. Then find the value of `|veca + 2vecb|^2 + |veca + 2vecc|^2`


The vector `vecp` perpendicular to the vectors `veca = 2hati + 3hatj - hatk` and `vecb = hati - 2hatj + 3hatk` and satisfying the condition `vecp.(2hati - hatj + hatk)` = –6 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×