Advertisements
Advertisements
Question
A particle acted on by constant forces `8hat"i" + 2hat"j" - 6hat"k"` and `6hat"i" + 2hat"j" - 2hat"k"` is displaced from the point (1, 2, 3) to the point (5, 4, 1). Find the total work done by the forces
Solution
`bar"OA" = hat"i" + 2hat"j" + 3hat"k"`
`bar"OB" = 5hat"i" + 4hat"j" + hat"k"`
`bar"d" = bar"AB"`
= `bar"OB" - bar"OA"`
= `4hat"i" + 2hat"j" - 2hat"k"`
`bar"F"_1 = 8hat"i" + 2hat"j" - 6hat"k"`
And `bar"F"_2 = 6hat"i" + 2hat"j" - 2hat"k"`
`bar"F" = bar"F"_1 + bar"F"_2`
= `14hat"i" + 4hat"j" - 8hat"k"`
Work done = `bar"F" bar"d"`
= `(14hat"i" + 4hat"j" - 8hat"k")(4hat"i" + 2hat"j" - 2hat"k")`
= 56 + 8 + 16
= 80 units
APPEARS IN
RELATED QUESTIONS
Prove by vector method that the diagonals of a rhombus bisect each other at right angles
Using vector method, prove that if the diagonals of a parallelogram are equal, then it is a rectangle
Prove by vector method that the area of the quadrilateral ABCD having diagonals AC and BD is `1/2 |bar"AC" xx bar"BD"|`
Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area
Forces of magnitudes `5sqrt(2)` and `10sqrt(2)` units acting in the directions `3hat"i" + 4hat"j" + 5hat"k"` and `10hat"i" + 6hat"j" - 8hat"k"` respectively, act on a particle which is displaced from the point with position vector `4hat"i" - 3hat"j" - 2hat"k"` to the point with position vector `6hat"i" + hat"j" - 3hat"k"`. Find the work done by the forces
Find the torque of the resultant of the three forces represented by `- 3hat"i" + 6hat"j" - 3hat"k", 4hat"i" - 10hat"j" + 12hat"k"` and `4hat"i" + 7hat"j"` acting at the point with position vector `8hat"i" - 6hat"j" - 4hat"k"` about the point with position vector `18hat"i" + 3hat"j" - 9hat"k"`
Choose the correct alternative:
If a vector `vecalpha` lies in the plane of `vecbeta` and `vecϒ`, then
Let `veca = hati - 2hatj + 3hatk, vecb = hati + hatj + hatk` and `vecc` be a vector such that `veca + (vecb xx vecc) = vec0` and `vecb.vecc` = 5. Then, the value of `3(vecc.veca)` is equal to ______.
Let `veca = 2hati + hatj - 2hatk` and `vecb = hati + hatj`. If `vecc` is a vector such that `veca.vecc = |vecc|, |vecc - veca| = 2sqrt(2)`, angle between `(veca xx vecb)` and `vecc` is `π/6`, then the value of `|(veca xx vecb) xx vecc|` is ______.
Let `veca, vecb, vecc` be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector `veca + vecb + vecc`. Then, 36 cos22θ is equal to ______.
Let `veca, vecb` and `vecc` be three unit vectors such that `|veca - vecb|^2 + |veca - vecc|^2` = 8. Then find the value of `|veca + 2vecb|^2 + |veca + 2vecc|^2`
The vector `vecp` perpendicular to the vectors `veca = 2hati + 3hatj - hatk` and `vecb = hati - 2hatj + 3hatk` and satisfying the condition `vecp.(2hati - hatj + hatk)` = –6 is ______.
If `vecx` and `vecy` be two non-zero vectors such that `|vecx + vecy| = |vecx|` and `2vecx + λvecy` is perpendicular to `vecy`, then the value of λ is ______.