Advertisements
Advertisements
Question
Prove by vector method that the diagonals of a rhombus bisect each other at right angles
Solution
Let ABCD be a rhombus
To prove `bar"AC" * bar"BD"` = 0
We have AB = BC = CD = DA
Now `bar"AC" = bar"AB" + "BC"`
`bar"BD" = bar"BC" + bar"CD"`
= `bar"BC" - bar"AB"` .......`("Since" bar"CD" = - bar"AB")`
`bar"AC" * bar"BD" = (bar"BC" + bar"AB") * (bar"BC" - bar"AB")`
= `(bar"BC")^2 - (bar"AB")^2`
= `("BC")^2 - ("AB")^2`
`bar"AC" * bar"BD"` = 0
∴ `bar"AC"` ⊥' to `bar"BD"`
Hence the result.
APPEARS IN
RELATED QUESTIONS
Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord
Prove by vector method that the median to the base of an isosceles triangle is perpendicular to the base
Prove by vector method that an angle in a semi-circle is a right angle
Using vector method, prove that if the diagonals of a parallelogram are equal, then it is a rectangle
Prove by vector method that the area of the quadrilateral ABCD having diagonals AC and BD is `1/2 |bar"AC" xx bar"BD"|`
Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area
A particle acted on by constant forces `8hat"i" + 2hat"j" - 6hat"k"` and `6hat"i" + 2hat"j" - 2hat"k"` is displaced from the point (1, 2, 3) to the point (5, 4, 1). Find the total work done by the forces
Choose the correct alternative:
If a vector `vecalpha` lies in the plane of `vecbeta` and `vecϒ`, then
Choose the correct alternative:
If `vec"a"*vec"b" = vec"b"*vec"c" = vec"c"*vec"a"` = 0, then the value of `[vec"a", vec"b", vec"c"]` is
Let A, B, C be three points whose position vectors respectively are
`vec"a" = hat"i" + 4hat"j" + 3hat"k"`
`vec"b" = 2hat"i" + αhat"j" + 4hat"k", α ∈ "R"`
`vec"c" = 3hat"i" - 2hat"j" + 5hat"k"`
If α is the smallest positive integer for which `vec"a", vec"b", vec"c"` are noncollinear, then the length of the median, in ΔABC, through A is ______.
Let `veca = hati - 2hatj + 3hatk, vecb = hati + hatj + hatk` and `vecc` be a vector such that `veca + (vecb xx vecc) = vec0` and `vecb.vecc` = 5. Then, the value of `3(vecc.veca)` is equal to ______.
Let `veca = 2hati + hatj - 2hatk` and `vecb = hati + hatj`. If `vecc` is a vector such that `veca.vecc = |vecc|, |vecc - veca| = 2sqrt(2)`, angle between `(veca xx vecb)` and `vecc` is `π/6`, then the value of `|(veca xx vecb) xx vecc|` is ______.
Let `veca, vecb` and `vecc` be three unit vectors such that `|veca - vecb|^2 + |veca - vecc|^2` = 8. Then find the value of `|veca + 2vecb|^2 + |veca + 2vecc|^2`
The value of `[veca + 2vecb - vecc, veca - vecb, veca - vecb - vecc]` is equal to the box product ______.
Let a, b, c ∈ R be such that a2 + b2 + c2 = 1. If `a cos θ = b cos(θ + (2π)/3) = c cos(θ + (4π)/3)`, where θ = `π/9`, then the angle between the vectors `ahati + bhatj + chatk` and `bhati + chatj + ahatk` is ______.
If `vecx` and `vecy` be two non-zero vectors such that `|vecx + vecy| = |vecx|` and `2vecx + λvecy` is perpendicular to `vecy`, then the value of λ is ______.