Advertisements
Advertisements
Question
Choose the correct alternative:
If `vec"a"*vec"b" = vec"b"*vec"c" = vec"c"*vec"a"` = 0, then the value of `[vec"a", vec"b", vec"c"]` is
Options
`|vec"a"||vec"b"||vec"c"|`
`1/3|vec"a"||vec"b"||vec"c"|`
1
– 1
Solution
`|vec"a"||vec"b"||vec"c"|`
APPEARS IN
RELATED QUESTIONS
Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord
Prove by vector method that an angle in a semi-circle is a right angle
Prove by vector method that the diagonals of a rhombus bisect each other at right angles
Using vector method, prove that if the diagonals of a parallelogram are equal, then it is a rectangle
Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area
If G is the centroid of a ΔABC, prove that (area of ΔGAB) = (area of ΔGBC) = (area of ΔGCA) = `1/3` (area of ΔABC)
Using vector method, prove that cos(α – β) = cos α cos β + sin α sin β
Prove by vector method that sin(α + ß) = sin α cos ß + cos α sin ß
A particle acted on by constant forces `8hat"i" + 2hat"j" - 6hat"k"` and `6hat"i" + 2hat"j" - 2hat"k"` is displaced from the point (1, 2, 3) to the point (5, 4, 1). Find the total work done by the forces
Forces of magnitudes `5sqrt(2)` and `10sqrt(2)` units acting in the directions `3hat"i" + 4hat"j" + 5hat"k"` and `10hat"i" + 6hat"j" - 8hat"k"` respectively, act on a particle which is displaced from the point with position vector `4hat"i" - 3hat"j" - 2hat"k"` to the point with position vector `6hat"i" + hat"j" - 3hat"k"`. Find the work done by the forces
Find the magnitude and direction cosines of the torque of a force represented by `3hat"i" + 4hat"j" - 5hat"k"` about the point with position vector `2hat"i" - 3hat"j" + 4hat"k"` acting through a point whose position vector is `4hat"i" + 2hat"j" - 3hat"k"`
Choose the correct alternative:
If `vec"a"` and `vec"b"` are parallel vectors, then `[vec"a", vec"c", vec"b"]` is equal to
Choose the correct alternative:
If a vector `vecalpha` lies in the plane of `vecbeta` and `vecϒ`, then
Let `veca = αhati + 3hatj - hatk, vecb = 3hati - βhatj + 4hatk` and `vecc = hati + 2hatj - 2hatk` where α, β ∈ R, be three vectors. If the projection of a `veca` on `vecc` is `10/3` and `vecb xx vecc = -6hati + 10hatj + 7hatk`, then the value of α + β is equal to ______.
Let `veca = hati - 2hatj + 3hatk, vecb = hati + hatj + hatk` and `vecc` be a vector such that `veca + (vecb xx vecc) = vec0` and `vecb.vecc` = 5. Then, the value of `3(vecc.veca)` is equal to ______.
Let `veca, vecb, vecc` be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector `veca + vecb + vecc`. Then, 36 cos22θ is equal to ______.
Let `veca, vecb` and `vecc` be three unit vectors such that `|veca - vecb|^2 + |veca - vecc|^2` = 8. Then find the value of `|veca + 2vecb|^2 + |veca + 2vecc|^2`
The value of `[veca + 2vecb - vecc, veca - vecb, veca - vecb - vecc]` is equal to the box product ______.