English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord - Mathematics

Advertisements
Advertisements

Question

Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord

Sum

Solution

A circle with centre at O.

AB is chord of the circle and OP bisects AB

(ie) AP = PB

To prove `bar"OP"` ⊥ `bar"AB"` O is the position vector

∴ `bar"OA" = bar"OB"` = Radius

Position vector of P

`bar"OP" = (bar"OA" + bar"OB")/2`

`bar"OP"*bar"AB" = bar"OP" * (bar"OB" - bar"OA")`

= `((bar"OB" + bar"OA")/2)* (bar"OB" - bar"OA")`

= `1/2[|bar"OB"|^2 - |bar"OA"|^2]`

= 0    ........`(∵ bar"OA" = bar"OB" = "Radius")`

∴ `bar"OP"` ⊥ `bar"AB"`

Hence proved

shaalaa.com
Scalar Product and Vector Product
  Is there an error in this question or solution?
Chapter 6: Applications of Vector Algebra - Exercise 6.1 [Page 231]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 6 Applications of Vector Algebra
Exercise 6.1 | Q 1 | Page 231

RELATED QUESTIONS

Using vector method, prove that if the diagonals of a parallelogram are equal, then it is a rectangle


Prove by vector method that the area of the quadrilateral ABCD having diagonals AC and BD is `1/2 |bar"AC" xx bar"BD"|`


Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area


If G is the centroid of a ΔABC, prove that (area of ΔGAB) = (area of ΔGBC) = (area of ΔGCA) = `1/3` (area of ΔABC)


Using vector method, prove that cos(α – β) = cos α cos β + sin α sin β


A particle acted on by constant forces `8hat"i" + 2hat"j" - 6hat"k"` and `6hat"i" + 2hat"j" - 2hat"k"` is displaced from the point (1, 2, 3) to the point (5, 4, 1). Find the total work done by the forces


Forces of magnitudes `5sqrt(2)` and `10sqrt(2)` units acting in the directions `3hat"i" + 4hat"j" + 5hat"k"` and `10hat"i" + 6hat"j" - 8hat"k"` respectively, act on a particle which is displaced from the point with position vector `4hat"i" - 3hat"j" - 2hat"k"` to the point with position vector `6hat"i" + hat"j" - 3hat"k"`. Find the work done by the forces


Choose the correct alternative:

If `vec"a"` and `vec"b"` are parallel vectors, then `[vec"a", vec"c", vec"b"]` is equal to


Choose the correct alternative:

If a vector `vecalpha` lies in the plane of `vecbeta` and `vecϒ`, then


Let `veca = αhati + 3hatj - hatk, vecb = 3hati - βhatj + 4hatk` and `vecc = hati + 2hatj - 2hatk` where α, β ∈ R, be three vectors. If the projection of a `veca` on `vecc` is `10/3` and `vecb xx vecc = -6hati + 10hatj + 7hatk`, then the value of α + β is equal to ______.


Let `veca = hati - 2hatj + 3hatk, vecb = hati + hatj + hatk` and `vecc` be a vector such that `veca + (vecb xx vecc) = vec0` and `vecb.vecc` = 5. Then, the value of `3(vecc.veca)` is equal to ______.


Let `veca, vecb, vecc` be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector `veca + vecb + vecc`. Then, 36 cos22θ is equal to ______.


The vector `vecp` perpendicular to the vectors `veca = 2hati + 3hatj - hatk` and `vecb = hati - 2hatj + 3hatk` and satisfying the condition `vecp.(2hati - hatj + hatk)` = –6 is ______.


Let a, b, c ∈ R be such that a2 + b2 + c2 = 1. If `a cos θ = b cos(θ + (2π)/3) = c cos(θ + (4π)/3)`, where θ = `π/9`, then the angle between the vectors `ahati + bhatj + chatk` and `bhati + chatj + ahatk` is ______.


If `vecx` and `vecy` be two non-zero vectors such that `|vecx + vecy| = |vecx|` and `2vecx + λvecy` is perpendicular to `vecy`, then the value of λ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×