Advertisements
Advertisements
Question
Prove by vector method that the median to the base of an isosceles triangle is perpendicular to the base
Solution
In isosceles ΔABC
Let AB = AC and AD is the median
D is the midpoint of BC
`bar"AD" = 1/2(bar"AB" + bar"AC")`
`bar"BC" = bar"BA" + bar"AC"`
`bar"DA" * bar"DB" = bar"AD" * ((-1)/2 bar"CB")`
= `- bar"AD"* (1/2 bar"BC")`
= `1/2 bar"AD" * bar"BC"`
= `1/4 (bar"AB" + bar"AC")*(bar"BA" + bar"AC")`
= `1/4(bar"AB" + bar"AC")*(bar"AC" - bar"AB")`
= `1/4[(bar"AC" * bar"AC") - (bar"AB" * bar"AB")]`
= `1/4("AC"^2 - "AB"^2)`
= `1/4(0)`
= 0
`bar"DA" * bar"DB"` = 0
`bar"DA" ⊥ bar"DB"`
APPEARS IN
RELATED QUESTIONS
Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord
Prove by vector method that the diagonals of a rhombus bisect each other at right angles
Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area
If G is the centroid of a ΔABC, prove that (area of ΔGAB) = (area of ΔGBC) = (area of ΔGCA) = `1/3` (area of ΔABC)
Using vector method, prove that cos(α – β) = cos α cos β + sin α sin β
Prove by vector method that sin(α + ß) = sin α cos ß + cos α sin ß
Forces of magnitudes `5sqrt(2)` and `10sqrt(2)` units acting in the directions `3hat"i" + 4hat"j" + 5hat"k"` and `10hat"i" + 6hat"j" - 8hat"k"` respectively, act on a particle which is displaced from the point with position vector `4hat"i" - 3hat"j" - 2hat"k"` to the point with position vector `6hat"i" + hat"j" - 3hat"k"`. Find the work done by the forces
Find the magnitude and direction cosines of the torque of a force represented by `3hat"i" + 4hat"j" - 5hat"k"` about the point with position vector `2hat"i" - 3hat"j" + 4hat"k"` acting through a point whose position vector is `4hat"i" + 2hat"j" - 3hat"k"`
Find the torque of the resultant of the three forces represented by `- 3hat"i" + 6hat"j" - 3hat"k", 4hat"i" - 10hat"j" + 12hat"k"` and `4hat"i" + 7hat"j"` acting at the point with position vector `8hat"i" - 6hat"j" - 4hat"k"` about the point with position vector `18hat"i" + 3hat"j" - 9hat"k"`
Choose the correct alternative:
If `vec"a"*vec"b" = vec"b"*vec"c" = vec"c"*vec"a"` = 0, then the value of `[vec"a", vec"b", vec"c"]` is
Let A, B, C be three points whose position vectors respectively are
`vec"a" = hat"i" + 4hat"j" + 3hat"k"`
`vec"b" = 2hat"i" + αhat"j" + 4hat"k", α ∈ "R"`
`vec"c" = 3hat"i" - 2hat"j" + 5hat"k"`
If α is the smallest positive integer for which `vec"a", vec"b", vec"c"` are noncollinear, then the length of the median, in ΔABC, through A is ______.
Let `veca = hati - 2hatj + 3hatk, vecb = hati + hatj + hatk` and `vecc` be a vector such that `veca + (vecb xx vecc) = vec0` and `vecb.vecc` = 5. Then, the value of `3(vecc.veca)` is equal to ______.
Let `veca = 2hati + hatj - 2hatk` and `vecb = hati + hatj`. If `vecc` is a vector such that `veca.vecc = |vecc|, |vecc - veca| = 2sqrt(2)`, angle between `(veca xx vecb)` and `vecc` is `π/6`, then the value of `|(veca xx vecb) xx vecc|` is ______.
Let `veca, vecb, vecc` be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector `veca + vecb + vecc`. Then, 36 cos22θ is equal to ______.
Let `veca, vecb` and `vecc` be three unit vectors such that `|veca - vecb|^2 + |veca - vecc|^2` = 8. Then find the value of `|veca + 2vecb|^2 + |veca + 2vecc|^2`
The vector `vecp` perpendicular to the vectors `veca = 2hati + 3hatj - hatk` and `vecb = hati - 2hatj + 3hatk` and satisfying the condition `vecp.(2hati - hatj + hatk)` = –6 is ______.
If `vecx` and `vecy` be two non-zero vectors such that `|vecx + vecy| = |vecx|` and `2vecx + λvecy` is perpendicular to `vecy`, then the value of λ is ______.