मराठी

Prove that p+q is irrational, where p, q are primes. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `sqrt(p) + sqrt(q)` is irrational, where p, q are primes.

बेरीज

उत्तर

Let us suppose that `sqrtp + sqrtq` is rational.

Again, let `sqrtp + sqrtq` = a, where a is rational.

Therefore, `sqrtq = a - sqrtp`

On squaring both sides, we get

q = `a^2 + p - 2asqrtp`   .....[∵ (a – b)2 = a2 + b2 – 2ab]

Therefore, `sqrtp = (a^2 + p - q)/(2a)`, which is a contradiction as the right-hand side is rational number while `sqrtp` is irrational, since p is a prime number.

Hence, `sqrtp + sqrtq` is irrational.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercise 1.3 [पृष्ठ ७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 1 Real Numbers
Exercise 1.3 | Q 14 | पृष्ठ ७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×