मराठी

Show that the cube of a positive integer of the form 6q + r, q is an integer and r = 0, 1, 2, 3, 4, 5 is also of the form 6m + r. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the cube of a positive integer of the form 6q + r, q is an integer and r = 0, 1, 2, 3, 4, 5 is also of the form 6m + r.

बेरीज

उत्तर

Let a be an arbitrary positive integer.

Then, by Euclid’s division algorithm, corresponding to the positive integers a and 6, there exist non-negative integers q and r such that

a = 6q + r, where 0 ≤ r < 6

`\implies` a3 = (6q + r)3 = 216q3 + r3 + 3 . 6q . r(6q + r)  .......[∵ (a + b)3 = a3 + b3 + 3ab(a + b)]

`\implies` a3 = (216q3 + 108q2r + 18qr2) + r3   .......(i)

Where 0 < r < 6

Case I: When r = 0,

Then putting r = 0 in equation (i), we get

a3 = 216q3 

= 6(36q3)

= 6m

Where, m = 36q3 is an integer.

Case II: When r = 1,

Then putting r = 1 in equation (i), we get

a3 = (216q3 + 108q2 + 18q) + 1

= 6(36q3 + 18q2 + 3q) + 1

`\implies` a3 = 6m + 1

Where, m = (36q3 + 18q2 + 3q) is an integer.

Case III: When r = 2,

Then putting r = 2 in equation (i), we get

a3 = (216q3 + 216q2 + 72q) + 8

a3 = (216q3 + 216q2 + 72q + 6) + 2

`\implies` a3 = 6(36q3 + 36q2 + 12q + 1) + 2

= 6m + 2

Where, m = (36q3 + 36q2 + 12q + 1) is an integer.

Case IV: When r = 3,

Then putting r = 3 in equation (i), we get

a3 = (216q3 + 324q2 + 162q) + 27

= (216q3 + 324q2 + 162q + 24) + 3

= 6(36q3 + 54q2 + 27q + 4) + 3

= 6m + 3

Where, m = (36q3 + 54q2 + 27q + 4) is an integer.

Case V: When r = 4,

Then putting r = 4 in equation (i), we get

a3 = (216q3 + 432q2 + 288q) + 64

= 6(36q3 + 72q2 + 48q) + 60 + 4

= 6(36q3 + 72q2 + 48q + 10) + 4

= 6m + 4

Where, m = (36q3 + 72q2 + 48q + 10) is an integer.

Case VI: When r = 5,

Then putting r = 5 in equation (i), we get

a3 = (216q3 + 540q2 + 450q) + 125

`\implies` a3 = (216 q3 + 540q2 + 450q) + 120 + 5

`\implies` a3 = 6(36q3 + 90q2 + 75q + 20) + 5

`\implies` a3 = 6m + 5
Where, m = (36q3 + 90q2 + 75q + 20) is an integer.

Hence, the cube of a positive integer of the form 6q + r, q is an integer and r = 0, 1, 2, 3, 4, 5 is also of the form 6m, 6m + 1, 6m + 2, 6m + 3, 6m + 4 and 6m + 5 i.e., 6m + r.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercise 1.4 [पृष्ठ ७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 1 Real Numbers
Exercise 1.4 | Q 1 | पृष्ठ ७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×