मराठी

Show that Every Positive Even Integer is of the Form (6m+1) Or (6m+3) Or (6m+5)Where M is Some Integer. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that every positive even integer is of the form (6m+1) or (6m+3) or (6m+5)where m is some integer.

उत्तर

Let n be any arbitrary positive odd integer.
On dividing n by 6, let m be the quotient and r be the remainder. So, by Euclid’s division lemma, we have
n = 6m + r, where 0 ≤ r ˂ 6.
As 0 ≤ r ˂ 6 and r is an integer, r can take values 0, 1, 2, 3, 4, 5.
⇒ n = 6m or n = 6m + 1 or n = 6m + 2 or n = 6m + 3 or n = 6m + 4 or n = 6m + 5
But n ≠ 6m or n ≠ 6m + 2 or n ≠ 6m + 4 ( ∵ 6m, 6m + 2, 6m + 4 are multiples of 2, so an even integer whereas n is an odd integer)
⇒ n = 6m + 1 or n = 6m + 3 or n = 6m + 5
Thus, any positive odd integer is of the form (6m + 1) or (6m + 3) or (6m + 5), where m is some integer.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercises 1

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×