Advertisements
Online Mock Tests
Chapters
2: Polynomials
3: Pair of Liner Equation in Two Variable
4: Quadatric Euation
5: Arithematic Progressions
6: Triangles
7: Coordinate Geometry
8: Introduction To Trigonometry and Its Applications
9: Circles
10: Construction
11: Area Related To Circles
12: Surface Areas and Volumes
13: Statistics and Probability
![NCERT Exemplar solutions for Mathematics [English] Class 10 chapter 1 - Real Numbers NCERT Exemplar solutions for Mathematics [English] Class 10 chapter 1 - Real Numbers - Shaalaa.com](/images/mathematics-english-class-10_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
Advertisements
Solutions for Chapter 1: Real Numbers
Below listed, you can find solutions for Chapter 1 of CBSE NCERT Exemplar for Mathematics [English] Class 10.
NCERT Exemplar solutions for Mathematics [English] Class 10 1 Real Numbers Exercise 1.1 [Pages 2 - 3]
Choose the correct alternative:
For some integer m, every even integer is of the form ______.
m
m + 1
2m
2m + 1
For some integer q, every odd integer is of the form ______.
q
q + 1
2q
2q + 1
n2 – 1 is divisible by 8, if n is ______.
An integer
A natural number
An odd integer
An even integer
If the HCF of 65 and 117 is expressible in the form 65m – 117, then the value of m is ______.
4
2
1
3
The largest number which divides 70 and 125, leaving remainders 5 and 8, respectively, is ______.
13
65
875
1750
If two positive integers a and b are written as a = x3 y2 and b = xy3; x, y are prime numbers, then HCF (a, b) is ______.
xy
xy2
x3y3
x2y2
If two positive integers p and q can be expressed as p = ab2 and q = a3b; a, b being prime numbers, then LCM (p, q) is ______.
ab
a2b2
a3b2
a3b3
The product of a non-zero rational and an irrational number is ______.
Always irrational
Always rational
Rational or Irrational
One
The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is ______.
10
100
504
2520
The decimal expansion of the rational number `14587/1250` will terminate after ______.
One decimal place
Two decimal places
Three decimal places
Four decimal places
NCERT Exemplar solutions for Mathematics [English] Class 10 1 Real Numbers Exercise 1.2 [Page 4]
Write whether every positive integer can be of the form 4q + 2, where q is an integer. Justify your answer.
“The product of two consecutive positive integers is divisible by 2”. Is this statement true or false? Give reasons.
True
False
“The product of three consecutive positive integers is divisible by 6”. Is this statement true or false”? Justify your answer.
True
False
Write whether the square of any positive integer can be of the form 3m + 2, where m is a natural number. Justify your answer.
A positive integer is of the form 3q + 1, q being a natural number. Can you write its square in any form other than 3m + 1, i.e., 3m or 3m + 2 for some integer m? Justify your answer.
The numbers 525 and 3000 are both divisible only by 3, 5, 15, 25 and 75. What is HCF (525, 3000)? Justify your answer.
Explain why 3 × 5 × 7 + 7 is a composite number.
Can two numbers have 18 as their HCF and 380 as their LCM? Give reasons.
Without actually performing the long division, find if `987/10500` will have terminating or non-terminating (repeating) decimal expansion. Give reasons for your answer.
A rational number in its decimal expansion is 327.7081. What can you say about the prime factors of q, when this number is expressed in the form `p/q`? Given reasons.
NCERT Exemplar solutions for Mathematics [English] Class 10 1 Real Numbers Exercise 1.3 [Pages 6 - 7]
Show that the square of any positive integer is either of the form 4q or 4q + 1 for some integer q.
Show that cube of any positive integer is of the form 4m, 4m + 1 or 4m + 3, for some integer m.
Show that the square of any positive integer cannot be of the form 5q + 2 or 5q + 3 for any integer q.
Show that the square of any positive integer cannot be of the form 6m + 2 or 6m + 5 for any integer m.
Show that the square of any odd integer is of the form 4q + 1, for some integer q.
If n is an odd integer, then show that n2 – 1 is divisible by 8.
Prove that if x and y are both odd positive integers, then x2 + y2 is even but not divisible by 4.
Use Euclid’s division algorithm to find the HCF of 441, 567, 693.
Using Euclid’s division algorithm, find the largest number that divides 1251, 9377 and 15628 leaving remainders 1, 2 and 3, respectively.
Prove that `sqrt(3) + sqrt(5)` is irrational.
Show that 12n cannot end with the digit 0 or 5 for any natural number n.
On a morning walk, three persons step off together and their steps measure 40 cm, 42 cm and 45 cm, respectively. What is the minimum distance each should walk so that each can cover the same distance in complete steps?
Write the denominator of the rational number `257/5000` in the form 2m × 5n, where m, n are non-negative integers. Hence, write its decimal expansion, without actual division.
Prove that `sqrt(p) + sqrt(q)` is irrational, where p, q are primes.
NCERT Exemplar solutions for Mathematics [English] Class 10 1 Real Numbers Exercise 1.4 [Page 7]
Show that the cube of a positive integer of the form 6q + r, q is an integer and r = 0, 1, 2, 3, 4, 5 is also of the form 6m + r.
Prove that one and only one out of n, n + 2 and n + 4 is divisible by 3, where n is any positive integer.
Prove that one of any three consecutive positive integers must be divisible by 3.
For any positive integer n, prove that n3 – n is divisible by 6.
Show that one and only one out of n, n + 4, n + 8, n + 12 and n + 16 is divisible by 5, where n is any positive integer.
[Hint: Any positive integer can be written in the form 5q, 5q + 1, 5q + 2, 5q + 3, 5q + 4].
Solutions for 1: Real Numbers
![NCERT Exemplar solutions for Mathematics [English] Class 10 chapter 1 - Real Numbers NCERT Exemplar solutions for Mathematics [English] Class 10 chapter 1 - Real Numbers - Shaalaa.com](/images/mathematics-english-class-10_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
NCERT Exemplar solutions for Mathematics [English] Class 10 chapter 1 - Real Numbers
Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 10 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT Exemplar solutions for Mathematics Mathematics [English] Class 10 CBSE 1 (Real Numbers) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT Exemplar textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 10 chapter 1 Real Numbers are Introduction of Real Numbers, Real Numbers Examples and Solutions, Euclid’s Division Lemma, Fundamental Theorem of Arithmetic, Fundamental Theorem of Arithmetic Motivating Through Examples, Proofs of Irrationality, Rational Numbers and Their Decimal Expansions, Concept of Irrational Numbers.
Using NCERT Exemplar Mathematics [English] Class 10 solutions Real Numbers exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Exemplar Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 10 students prefer NCERT Exemplar Textbook Solutions to score more in exams.
Get the free view of Chapter 1, Real Numbers Mathematics [English] Class 10 additional questions for Mathematics Mathematics [English] Class 10 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.