मराठी

Show that the square of any positive integer cannot be of the form 5q + 2 or 5q + 3 for any integer q. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the square of any positive integer cannot be of the form 5q + 2 or 5q + 3 for any integer q.

बेरीज

उत्तर

Let a be an arbitrary positive integer.

Then, by Euclid’s division algorithm, corresponding to the positive integers a and 5, there exist non-negative integers m and r such that

a = 5m + r, where 0 ≤ r < 5

`\implies` a2 = (5m + r)2 = 25m2 + r2 + 10mr ......[∵ (a + b)2 = a2 + 2ab + b2]

`\implies` a2 = 5(5m2 + 2mr) + r2, where, 0 < r < 5 …(i)

Case I: When r = 0,

Then putting r = 0 in equation (i), we get

a2 = 5(5m2) = 5q

Where, q = 5m2 is an integer.

Case II: When r = 1,

Then putting r = 1 in equation (i), we get

a2 = 5(5m2 + 2m) + 1

`\implies` a2 = 5q + 1

Where, q = (5m2 + 2m) is an integer.

Case III: When r = 2,

Then putting r = 2 in equation (i), we get

a2 = 5(5m2 + 4m) + 4

= 5q + 4

where, q = (5m2 + 4m) is an integer.

Case IV: When r = 3,

Then putting r = 3 in equation (i), we get

a2 = 5(5m2 + 6m) + 9

= 5(5m2 + 6m) + 5 + 4

= 5(5m2 + 6m + 1) + 4

= 5q + 4

Where, q = (5m2 + 6m + 1) is an integer.

Case V: When r = 4,

Then putting r = 4 in equation (i), we get

a2 = 5(5m2 + 8m) + 16

= 5(5m2 + 8m) + 15 + 1

`\implies` a2 = 5(5m2 + 8m + 3) + 1

= 5q + 1

Where, q = (5m2 + 8m + 3) is an integer.

Hence, the square of any positive integer cannot be of the form 5q + 2 or 5q + 3 for any integer q.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercise 1.3 [पृष्ठ ६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 1 Real Numbers
Exercise 1.3 | Q 3 | पृष्ठ ६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×