मराठी

Show that cube of any positive integer is of the form 4m, 4m + 1 or 4m + 3, for some integer m. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that cube of any positive integer is of the form 4m, 4m + 1 or 4m + 3, for some integer m.

बेरीज

उत्तर

Let a be an arbitrary positive integer.

Then, by division algorithm, corresponding to the positive integers a and 4, there exist non-negative integers q and r such that

a = 4q + r, where 0 ≤ r < 4

`\implies` a3 = (4q + r)3

= 64q3 + r3 + 12qr2 + 48q2r   .......[∵ (a + b)3 = a3 + b3 + 3ab2 + 3a2b)

`\implies` a3 = (64q3 + 48q2r + 12qr2) + r3  .......(i)

Where, 0 ≤ r < 4

Case I: When r = 0,

Then putting r = 0 in equation (i), we get

a3 = 64q3 = 4(16q3)

`\implies` a3 = 4m, where, m = 16q3 is an integer.

Case II: When r = 1,

Then putting r = 1 in equation (i), we get

a3 = 64q3 + 48q2 + 12q + 1

= 4(16q3 + 12q2 + 3q) + 1

= 4m + 1

Where, m = (16q3 + 12q2 + 3q) is an integer.

Case III: When r = 2,

Then putting r = 2 in equation (i), we get

a3 = 64q3 + 96q2 + 48q + 8

= 4(16q3 + 24q2 + 12q + 2)

= 4m

Where, m = (16q3 + 24q2 +12q + 2) is an integer.

Case IV: When r = 3,

Then putting r = 3 in equation (i), we get

a3 = 64q3 + 144q2 + 108q + 27

= 64q3 + 144q2 + 108q + 24 + 3

= 4(16q3 + 36q2 + 27q + 6) + 3

= 4m + 3

Where, m = (16q3 + 36q2 + 27q + 6) is an integer.

Hence, the cube of any positive integer is of the form 4m, 4m + 1 or 4m + 3 for some integer m.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Real Numbers - Exercise 1.3 [पृष्ठ ६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 1 Real Numbers
Exercise 1.3 | Q 2 | पृष्ठ ६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×