Advertisements
Advertisements
प्रश्न
n2 – 1 is divisible by 8, if n is ______.
पर्याय
An integer
A natural number
An odd integer
An even integer
उत्तर
n2 – 1 is divisible by 8, if n is an odd integer.
Explanation:
Let x = n2 – 1
In the above equation, n can be either even or odd.
Let us assume that n = even.
So, when n = even i.e., n = 2k
Where k is an integer
We get,
`\implies` x = (2k)2 – 1
`\implies` x = 4k2 – 1
At k = – 1,
x = 4(–1)2 – 1
= 4 – 1
= 3, is not divisible by 8.
At k = 0,
x = 4(0)2 – 1
= 0 – 1
= – 1, is not divisible by 8
Let us assume that n = odd:
So, when n = odd
i.e., n = 2k + 1
Where k is an integer
We get,
`\implies` x = 2k + 1
`\implies` x = (2k + 1)2 – 1
`\implies` x = 4k2 + 4k + 1 – 1
`\implies` x = 4k2 + 4k
`\implies` x = 4k(k + 1)
At k = –1, x = 4(–1)(–1 + 1) = 0 which is divisible by 8.
At k = 0, x = 4(0)(0 + 1) = 0 which is divisible by 8.
At k = 1, x = 4(1)(1 + 1) = 8 which is divisible by 8.
From the above two observation
We can conclude that, if n is odd, n2 – 1 is divisible by 8.
APPEARS IN
संबंधित प्रश्न
Explain why 7 × 11 × 13 + 13 and 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 are composite numbers.
Find the LCM and HCF of the following integers by applying the prime factorisation method.
8, 9 and 25
If m, n are natural numbers, for what values of m, does 2n × 5m ends in 5?
Find the L.C.M. and H.C.F. of 408 and 170 by applying the fundamental theorem of Arithmetic
Find the least number that is divisible by the first ten natural numbers
For some integer p, every even integer is of the form ______.
If two positive integers A and B can be expressed as A = xy3 and B = xiy2z; x, y being prime numbers, the LCM (A, B) is ______.
The ratio of LCM and HCF of the least composite and the least prime numbers is ______.
Assertion (A): The HCF of two numbers is 5 and their product is 150. Then their LCM is 40.
Reason(R): For any two positive integers a and b, HCF (a, b) × LCM (a, b) = a × b.
If HCF (72, 120) = 24, then LCM (72, 120) is ______.